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Abstract. In this paper, we introduce a generalized family of numbers and polynomials
of one or more variables attached to the formal composition f .(g ◦ h) of generating func-
tions f , g and h. We give explicit formula and apply the obtained result to two special
families of polynomials; the first concerns generalization of some polynomials applied
to the theory of hyperbolic differential equations recently introduced and studied by M.
Mihoubi and M. Sahari. The second concerns two variables Laguerre-based generalized
Hermite-Euler polynomials introduced and should be updated to studied recently by N.
U. Khan et al..

1. Introduction

As a new tradition, many people are interested by numbers and polynomials having
applications on the hyperbolic differential equations, combinatorics, physics and engi-
neering sciences. In the literature there is numerous works on polynomials and their
generalizations. We invite the reader to consult [1, 2, 11, 12, 13] and references therein.
Let

f (t) = ∑
n≥0

fn
tn

n!
, g(t) = ∑

n≥0
gn

tn

n!
and h(t) = ∑

n≥0
hn

tn

n!

three known formal exponential generating functions of numbers or polynomials of one
or more variables. We consider the generating function f (t)g ◦ h(t) = ∑n≥0 L( f ,g,h)

n
tn

n!

in order to compute explicit formula of L( f ,g,h)
n . For showing the importance of this

generalization we study two kinds of polynomials. The first concerns polynomials
dealing with the theory of hyperbolic differential equations recently introduced by M.
Mihoubi and M. Sahari (see [10]); where we reproof the explicit formula therein. The
second deals with three variables Laguerre polynomials investigated in the work [9]
where we give the explicit formula too. It is well-known that the derivative at order n
of the composition g ◦ h is given by Faà di Bruno formula:

(g ◦ h)(n) (t) =
n

∑
k=1

Bn,k

(
h(1)(t), · · · , h(n−k+1)(t)

)
g(k) ◦ h(t),(1)
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where Bn,k := Bn,k (x1, x2, · · · ) (see [3]) are exponential partial Bell polynomials given
by

Bn,k (x1, x2, · · · ) = n!
k! ∑

πn(k)

(
k

k1, · · · kn−k+1

) n−k+1

∏
r=1

(xr

r!

)kr
,(2)

with πn(k) is the set of all (k1, · · · , kn−k+1) ∈ Nn−k+1 such that k1 + · · ·+ kn−k+1 = k
and k1 + 2k2 + · · ·+ (n− k + 2)kn−k+2 = n. Bn,k are generated by the function

1
k!

(
∑

m≥1
xm

tm

m!

)k

= ∑
n≥k

Bn,k (x1, x2, · · · ) tn

n!
.(3)

According to polynomials Bn,k; the series expansion of the composition g ◦ h on neigh-
borhood of zero is given by the following lemma, the proof is left as a sample exercise
for the reader.

Lemma 1.1.

g ◦ h(t) = g(h0) + ∑
n≥1

n

∑
k=1

Bn,k (h1, h2, · · · ) g(k)(h0)
tn

n!
.(4)

For g(t) = tα, the corresponding expression of g ◦ h; if h0 6= 0 is given in the work
[7]. We remember that the Cauchy product (see [6]) of f and g is

f (t)g(t) = ∑
n≥0

(
n

∑
k=0

(
n
k

)
fkgn−k

)
tn

n!
.(5)

With the combination of identity (4) Lemma 1.1 and the identity (5), the following
theorem holds.

Theorem 1.2. We have L( f ,g,h)
0 = g(h0) f0 and for n ≥ 1:

L( f ,g,h)
n = g(h0) fn +

n

∑
k=1

k

∑
i=1

(
n
k

)
fn−kBk,i (h1, · · · , hk−i+1) g(i)(h0).(6)

Consequently we have

Corollary 1.3. If h0 = 0, we have L( f ,g,h)
0 = g0 f0 and

L( f ,g,h)
n = g0 fn +

n

∑
k=1

k

∑
i=1

(
n
k

)
fn−kgiBk,i (h1, · · · , hk−i+1) .(7)
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2. Application to sequences of polynomials linked to the sequence of Bell

polynomials.

Recently M. Mihoubi and M. Sahari (see [10]) studied polynomials L(α,β)
n (x) defined

by means of the generating function

(1− t)α exp
(

x
(
(1− t)β − 1

))
= ∑

n≥0
L(α,β)

n (x)
tn

n!
(8)

and proved that

(9) L(α,β)
n (x) =

n

∑
i=0

Sα,β (n, i) xi,

where

Sα,β (n, i) =
1
i!

i

∑
j=0

(−1)i−j
(

i
j

)
〈−α− βj〉n

and 〈α〉n = α (α + 1) · · · (α + n− 1), which admits the reformulation 〈α〉n = (−1)n(α)n;
with (α)n = α (α− 1) · · · (α− n + 1) is a falling number. In this section we prove this
formula by using advanced algebraic combinatorics; our method is different of that
given in [10] based on the Theorem [14, th. 7.50]. First we begin by an improvement of
[10, Proposition.1]. Letting

f (t) = (1− t)α = ∑
n≥0

(−1)n(α)n
tn

n!

g(t) = et = ∑
n≥0

tn

n!

and
h(t) = x

(
(1− t)β − 1

)
= ∑

n≥1
(−1)n(β)nx

tn

n!
.

Then
f (t)g ◦ h(t) = (1− t)α exp

(
x
(
(1− t)β − 1

))
and L( f ,g,h)

n = Ł(α,β)
n (x). Thereafter

fn = (−1)n(α)n, gn = 1, h0 = 0 and hn = (−1)n(β)nx.

The exponential partial Bell polynomials implicated in the expression of Ł(α,β)
n (x) are

Bk,i

(
(−1)1(β)1x, (−1)2(β)2x, · · ·

)
=

k!
i!

xi(−1)kBk,i ((β)1, (β)2, · · · ) .

By means of Theorem 1.2, the following theorem holds.

Theorem 2.1.

L(α,β)
n (x) = (−1)n(α)n +

n

∑
k=1

k

∑
i=1

(
n
k

)
(−1)n(α)n−kBk,i ((β)1, (β)2, · · · ) xi.(10)
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Remark 2.2. For i > k, only we have Bk,i = 0. Then the expression (10) Theorem 2.1 can be
written in the form

L(α,β)
n (x) = (−1)n(α)n +

n

∑
k=1

n

∑
i=1

(
n
k

)
(−1)n(α)n−kBk,i ((β)1, (β)2, · · · ) xi.(11)

This formula is important, it helps us to prove [10, Proposition.1].

Now with the following lemma we give explicit formula of exponential partial Bell
polynomials Bk,i ((β)1, (β)2, · · · ) .

Lemma 2.3.

(12) Bk,i ((β)1, (β)2, · · · ) = 1
k!

k

∑
j=0

(
k
j

)
(−1)k−j(βj)n.

Proof. From the definition of exponential partial polynomials Bk,i ((β)1, (β)2, · · · ), we
have

1
k!

(
(1 + t)β − 1

)k
= ∑

n≥k
Bn,k ((β)1, · · · , (β)n−k+1)

tn

n!

but (
(1 + t)β − 1

)k
=

k

∑
j=0

(
k
j

)
(1 + t)βj (−1)k−j

and
1
k!

(
(1 + t)β − 1

)k
=

1
k! ∑

n≥0

k

∑
j=0

(
k
j

)
(−1)k−j(βj)n

tn

n!
.

Furthermore we conclude that

Bk,i ((β)1, (β)2, · · · ) = 1
k!

k

∑
j=0

(
k
j

)
(−1)k−j(βj)n

�

According to identity (12) Lemma 2.3, the expression of L(α,β)
n (x) becomes

L(α,β)
n (x) = (−1)n(α)n +

n

∑
k=1

n

∑
i=1

i

∑
j=0

(
n
k

)(
i
j

)
1
i!
(−1)n+i−j(βj)k(α)n−kxi.(13)

For k = 0 we have
n

∑
i=1

(
i

∑
j=0

(
i
j

)
(−1)i−j

)
1
i!

xi = 0,

the above expression of L(α,β)
n (x) becomes

L(α,β)
n (x) = (−1)n(α)n +

n

∑
k=0

n

∑
i=1

i

∑
j=0

(
n
k

)(
i
j

)
1
i!
(−1)n+i−j(βj)k(α)n−kxi.(14)
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To write

L(α,β)
n (x) =

n

∑
i=0

Sα,β(n, i)xi

we must prove the following lemma

Lemma 2.4.

(15) Sα,β (n, i) =
1
i!

n

∑
k=0

i

∑
j=0

(
n
k

)(
i
j

)
(−1)n+i−j(βj)k(α)n−k.

Proof. We have Sα,β (n, 0) = 〈α〉n = (−1)n(α)n. Since

(−1)n
n

∑
k=0

(
n
k

)
(βj)k(α)n−k = (−1)n(α + βj)n = 〈−α− βj〉n

and according to the identity (14) the result follows. �

3. Application to two variable Laguerre polynomials

Laguerre polynomials Łn(x, y) are defined by the generating function (see [4])

(16)
1

1− yt
exp

(
−xt

1− yt

)
= ∑

n≥0
Łn(x, y)tn,

which is equivalent (see [5]) to

(17) exp (yt)C0(xt) = ∑
n≥0

Łn(x, y)
tn

n!
,

where

C0(xt) = ∑
n≥0

(−1)nxn

n!
tn

n!
.

Then

exp (yt)C0(xt) = ∑
n≥0

n

∑
k=0

(
n
k

)
(−1)kxkyn−k

k!
tn

n!
.

Finally the identity proved in [9] follows.

(18) Łn(x, y) =
n

∑
k=0

(
n
k

)
(−1)kxkyn−k

k!

The generating function of Łn(x, y) is written under the form

1
1− yt

exp
(
−xt

1− yt

)
= f (t)g ◦ h(t);

where

f (t) =
1

1− yt
= ∑

n≥0
n!yn tn

n!
,
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g(t) = et = ∑
n≥0

tn

n!

and

h(t) =
−xt

1− yt
= − ∑

n≥0
xyntn+1 = − ∑

n≥1
n!xyn−1 tn

n!
.

Furthermore fn = n!yn, gn = 1, h0 = 0 and hn = −n!xyn−1. According to identity (7)
Corollary 1.3, we have already proved the following theorem

Theorem 3.1. we have Ł0(x, y) = 1 and for n ≥ 1;

Łn(x, y) = yn +
n

∑
k=1

k

∑
i=1

1
k!
(−x)iyn−iBk,i (1!, · · · , (k− i + 1)!) .(19)

To obtain the identity (18) we must compute Bk,i (1!, · · · , (k− i + 1)!) . In the first
view L. Comtet ( see Identity [3h] [3, Theorem B p.135] ) obtained the following result

Bk,i (1!, · · · , (k− i + 1)!) =
(

n− 1
k− 1

)
n!
k!

.

Here we give another reformulation of this identity. In one hand, we have

1
k!

(
∑

m≥1
tm

)k

= ∑
n≥k

Bn,k (1!, 2!, · · · , (n− k + 1)!)
tn

n!
.

In another hand we have

1
k!

(
∑

m≥1
tm

)k

=
1
k!

(
t

1− t

)k
=

tk

k! ∑
n≥0

(−1)n(−k)n
tn

n!
.

After little calculation, we will have

1
k!

(
∑

m≥1
tm

)k

= ∑
n≥0

(
n
k

)
(−1)n−k(−k)n−k

tn

n!
.

But we know that

(−k)n = (−1)n (k + n− 1)!
(k− 1)!

.

Finally we have

(20) Bk,i (1!, · · · , (k− i + 1)!) =
(

n
k

)
(n− 1)!
(k− 1)!

.

Returning back to identity (19) under Theorem 3.1 and after substitution we obtain

Łn(x, y) = yn +
n

∑
k=1

k

∑
i=1

1
k!
(−x)iyn−i

(
k
i

)
(k− 1)!
(i− 1)!

,

which can be written in the form



GENERALIZED POLYNOMIALS 7

Łn(x, y) = yn +
n

∑
i=1

n

∑
k=i

(−x)iyn−i (k− 1)!i
(i!)2(k− i)!

.

By using the well-known Hockey-stick identity we have

n

∑
k=i

i(k− 1)!
(k− i)!

= i!
n

∑
k=i

(
k− 1
i− 1

)
= i!

n−1

∑
k=i−1

(
k

i− 1

)
= i!

(
n
i

)
=

n!
(n− i)!

.

Hence

Łn(x, y) = n!
n

∑
i=0

(−x)iyn−i

(i!)2(n− i)!
.

Sometimes we are concerned by generating functions of the form f . (g ◦ h) . (v ◦ w)
which contains four operations; two products and two compositions. Let v(t) =

∑n≥0 vn
tn

n! , w(t) = ∑n≥0 wn
tn

n! and L( f ,g,h)
n,v,w be the sequence generated by f . (g ◦ h) . (v ◦ w).

According to identity (4) Lemma 1.1, we will have:

v ◦ w(t) = v(w0) + ∑
n≥1

n

∑
k=1

Bn,k (w1, w2, · · · ) v(k)(w0)
tn

n!
.

Let G(t) = g ◦ h(t)v ◦ w(t), then G(0) = g(h0)v(w0) and by means of Cauchy product
of generating functions we have

G(t) = G(0) + ∑
n≥1

(
n−1

∑
k=1

(
n
k

) k

∑
i=1

Bk,i (h1, h2, · · · ) g(i)(h0)
n−k

∑
i=1

Bn−k,i (w1, w2, · · · ) v(i)(w0)

)
tn

n!

+g(h0) ∑
n≥1

n

∑
i=1

Bn,i (w1, w2, · · · ) v(i)(w0)
tn

n!

+v(w0) ∑
n≥1

n

∑
i=1

Bn,i (h1, h2, · · · ) g(i)(h0)
tn

n!
.

Writing G(t) = ∑n≥0 Gn
tn

n! , so G0 = g(h0)v(w0) and for n ≥ 1 we have

Gn =
n−1

∑
k=1

(
n
k

) k

∑
i=1

n−k

∑
j=1

Bk,i (h1, h2, · · · ) Bn−k,j (w1, w2, · · · ) g(i)(h0)v(j)(w0)

+g(h0)
n

∑
i=1

Bn,i (w1, w2, · · · ) v(i)(w0)

+v(w0)
n

∑
i=1

Bn,i (h1, h2, · · · ) g(i)(h0)

Finally by means of Cauchy product of generating functions, we have

L( f ,g,h)
s,v,w =

s

∑
n=0

(
s
n

)
fs−nGn.
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Hence

L( f ,g,h)
s,v,w = fsg(h0)v(w0)

+∑
1

(
s
n

)(
n
k

)
fs−nBk,i (h1, h2, · · · ) Bn−k,j (w1, w2, · · · ) g(i)(h0)v(j)(w0)

+g(h0)∑
2

(
s
n

)
fs−nBn,i (w1, w2, · · · ) v(i)(w0)

+v(w0)∑
2

(
s
n

)
fs−nBn,i (h1, h2, · · · ) g(i)(h0),(21)

where

∑
1
=

s

∑
n=0

n−1

∑
k=1

k

∑
i=1

n−k

∑
j=1

and ∑
2
=

s

∑
n=0

n

∑
i=1

.

Recently, Khan, N. U. et al. introduced and studied Laguerre-based generalized Hermite-
Euler polynomials LHEs[α,m−1](x, y, z) (see [9]); these are generated by the function(

2m

et + ∑m−1
n=0

tn

n!

)α

eyt+zt2
C0(xt) = ∑

s≥0
LHEs[α,m−1](x, y, z)

ts

s!
.

and provide that (see [9, Theorem 2.3])

LHEs[α,m−1](x, y, z) =
s

∑
r=0

E[m−1]
s−r LHEs[α−1,m−1](x, y, z),

where the numbers E[m−1] are generated by the function(
2m

et + ∑m−1
n=0

tn

n!

)α

= ∑
s≥0

E[m−1] t
s

s!
.

The generating function of LHEs[α,m−1](x, y, z) obeys to the form below. One writes(
2m

et + ∑m−1
n=0

tn

n!

)α

eyt+zt2
C0(xt) = f (t) (g ◦ h(t)) (v ◦ w(t)) ,

with

f (t) = C0(xt) = ∑
n≥0

(−1)nxn

n!
tn

n!
,

h(t) =
et + ∑m−1

n=0
tn

n!
2m =

1
2m

(
2

m−1

∑
n=0

tn

n!
+ ∑

n≥m

tn

n!

)
,
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g(t) = t−α, v(t) = et and w(t) = yt + zt2. Thus fn = (−1)nxn

n! , hn = 2−m+1 for n ≤ m− 1
and hn = 2−m for n ≥ m, vn = 1, w0 = 0, w1 = y, w2 = x and wn = 0 for n ≥ 3. Then

LHEn[α,m−1](x, y, z) =
(−1)sxs

s!
2(m−1)α

+∑
1

(
s
n

)(
n
k

)
(−1)s−nxs−n

(s− n)!
2(α+i)(m−1)(−α)iBk,i (h1, h2, · · · ) Bn−k,j (y, z, 0 · · · )

+2(m−1)α ∑
2

(
s
n

)
(−1)s−nxs−n

(s− n)!
Bn,i (y, z, 0 · · · )

+∑
2

(
s
n

)
(−1)s−nxs−n

(s− n)!
2(α+i)(m−1)(−α)iBn,i (h1, h2, · · · ) .

We have

Bn,i (y, z, 0, · · · ) = n!
i! ∑

i1+i2=i
i1+2i2=n

(
i

i1, i2

)
yi1zi2 =

n!
i!

i

∑
j=0

(
i
j

)
yn−2jzj.

and

Bn,i (h1, h2, · · · ) = n!
i! ∑

πn(i)

(
i

i1, · · · in−i+1

) n−i+1

∏
r=1

(
hr

r!

)ir

If n− i + 1 ≤ m− 1 we have

Bn,i (h1, h2, · · · ) = 2−i(m−1)Bn,i (1, 1, · · · ) = 2−i(m−1)S(n, i).

If n− i + 1 ≥ m we have

Bn,i (h1, h2, · · · ) = n!
i!

2−im ∑
πn(i)

(
i

i1, · · · in−i+1

) m−1

∏
r=1

(
2
r!

)ir n−i+1

∏
r=1

(
1
r!

)ir
.

Otheriwise we have(
s
n

)(
n
k

)
1

(s− n)!
(n− k)!

i!

(
i
j

)
=

s!
((s− n)!)2k!j!(i− j)!

and (
s
n

)
1

(s− n)!
n!
i!

(
i
j

)
=

s!
((s− n)!)2 j!(i− j)!

.

Then we have already proved the following theorem.

Online Journal of Analytic Combinatorics, Issue 16 (2021), #10
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Theorem 3.2.

LHEn[α,m−1](x, y, z)
s!

=
(−1)sxs

(s!)2 2(m−1)α

+∑
1

i

∑
j=0

(−1)s−n2(α+i)(m−1)(−α)i

((s− n)!)2k!j!(i− j)!
Bk,i (h1, h2, · · · ) xs−nyn−k−2jzj

+2(m−1)α ∑
2

i

∑
j=0

(−1)s−n

((s− n)!)2 j!(i− j)!
xs−nyn−2jzj

+∑
2

(−1)s−n2(α+i)(m−1)(−α)i

n!((s− n)!)2 Bn,i (h1, h2, · · · ) xs−n.(22)

4. Conclusion

Using algebraic operations on generating functions such as multiplication and com-
position, we can build a large family of polynomials as extensions of well-known poly-
nomials in the literature. In this work we are interested by numbers and polynomials
generated by functions of the forms f .(g ◦ h) and f . (g ◦ h) . (v ◦ w); where f , g, h, v
and w are generating functions and we use Bell polynomials to give the explicit formu-
lae. The obtained results are applied to two kinds of polynomials. The first concerns
polynomials dealing with the theory of hyperbolic differential equations recently intro-
duced and investigated by M. Mihoubi and M. Sahari; where we give another proof of
the explicit formula therein. The second deals with two variables Laguerre polynomi-
als and Laguerre-based generalized Hermite-Euler polynomials investigated by N. U.
Khan et al.; where we give the explicit formula too. These families are only an example
of infinitely many numbers and polynomials generated by functions of types f .(g ◦ h)
and f . (g ◦ h) . (v ◦ w) .
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