
GENERALIZED FIBONACCI-PELL HYBRINOMIALS

ANETTA SZYNAL-LIANA AND IWONA WŁOCH

Abstract. Hybrid numbers are generalization of complex, hyperbolic and dual num-
bers. In this paper we introduce and study Fibonacci-Pell hybrinomials, i.e. polynomials,
which are a generalization of hybrid numbers of the Fibonacci type.

1. Introduction and preliminary results

Let Fn be the nth Fibonacci number defined recursively by Fn = Fn−1 + Fn−2 for n ≥ 2
with initial terms F0 = 0, F1 = 1, see for details [9]. There are many generalizations of
Fibonacci numbers related to them, the survey can be found in [1].

Among the number of distinct generalizations and variants of Fibonacci numbers an
important role play numbers defined by the second order linear recurrence relations
which are named as numbers of the Fibonacci type, see [15]. In this paper apart clas-
sical Fibonacci numbers we investigate Pell numbers and their special second-order
generalizations.

Let Pn be the nth Pell number defined by Pn = 2Pn−1 + Pn−2 for n ≥ 2 with P0 = 0,
P1 = 1.

For numbers Fn and Pn direct formulas named as Binet formula and Binet formula
for Pell numbers, respectively, have the form

Fn =
1√
5

[(
1 +
√

5
2

)n

−
(

1−
√

5
2

)n]

Pn =
(1 +

√
2)n − (1−

√
2)n

2
√

2
.

In [7] Falcon and Plaza gave the following generalization of Fibonacci numbers and
Pell numbers. Let k ≥ 1 be an integer. Then

(1) Fk
n = k · Fk

n−1 + Fk
n−2 for n ≥ 2

with Fk
0 = 0 and Fk

1 = 1.
Clearly F1

n = Fn and F2
n = Pn. Consequently numbers Fk

n are named as Fibonacci-Pell
numbers. For their combinatorial properties see [6, 7].
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Interesting results for numbers of the Fibonacci type were obtain quite recently in
[2, 3]. Polynomials defined by a recurrence relations fn(x) = h(x) fn−1(x) + g(x) fn−2,
for n ≥ 2 with fixed f0, f1 are Fibonacci type polynomials, see for details [15]. They
can be considered as a generalization of numbers of the Fibonacci type. A special case
of h(x)-Fibonacci polynomials were introduced and studied in [11]. For any variable
quantity x and an integer k ≥ 1 generalized Fibonacci polynomials Fk

n(x) are defined
as

(2) Fk
n(x) = kx · Fk

n−1(x) + Fk
n−2(x) for n ≥ 2

with Fk
0 (x) = 0 and Fk

1 (x) = 1. Then F1
n(x) = Fn(x) is the nth Fibonacci polynomial and

F2
n(x) = Pn(x) is the nth Pell polynomial.
In this paper we define a family of polynomials which includes the classical Fibonacci

polynomials, Pell polynomials and their generalizations given by (2). Based on this fa-
mily we introduce and study a generalization of Fibonacci and Pell hybrinomials.

Let k ≥ 1 be an integer and α, q ∈ R. For any variable quantity x, the (k, α, q)-
Fibonacci-Pell polynomial Fk

n(α, q; x) is defined as

(3) Fk
n(α, q; x) = kx · Fk

n−1(α, q; x) + Fk
n−2(α, q; x) for n ≥ 2

with Fk
0 (α, q; x) = 1 and Fk

1 (α, q; x) = α(1 + q)x.
Using the above definition, we can write initial (k, α, q)-Fibonacci-Pell polynomials

Fk
2 (α, q; x) = α(1 + q)kx2 + 1,

Fk
3 (α, q; x) = α(1 + q)k2x3 + (α(1 + q) + k)x,

Fk
4 (α, q; x) = α(1 + q)k3x4 + (2α(1 + q) + k)kx2 + 1,

Fk
5 (α, q; x) = α(1 + q)k4x5 + (3α(1 + q) + k)k2x3 + (α(1 + q) + 2k)x.

The formula (3) generalizes Fibonacci polynomials and Pell polynomials, simultane-
ously. It is interesting that there are infinitely many pairs (α, q) such that Fk

n(α, q; x) give
Fibonacci polynomials and Pell polynomials. If α(1 + q) = k then Fk

n(α, q; x) = Fk
n+1(x)

and consequently for k = 1, 2 we have F1
n(α, q; x) = Fn+1(x) and F2

n(α, q; x) = Pn+1(x).
Moreover we can observe that Fk

n(0, q; x) = Fk
n+2(x) for an arbitrary q ∈ R.

In particular if α is a positive root of the characteristic equation of the recurrence
relation of the Fibonacci sequence, the Pell sequence and k-Fibonacci-Pell sequence,
respectively, then

F1
n

(
1 +
√

5
2

,
−2

3 +
√

5
; x

)
= Fn+1(x),

F2
n

(
1 +
√

2,− −1
3 + 2

√
2

; x
)
= Pn+1(x),
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and

Fk
n

(
k +
√

k2 + 4
2

,
−2

k2 + 2 + k
√

k2 + 4
; x

)
= Fk

n+1(x).

Roots of the characteristic equation of the Horadam recurrence relation were used in
the concept of generalized hybrid numbers, see for details [8].

The characteristic equation of the relation (3) is t2(x)− kx · t(x)− 1 = 0 so roots of it

are t1(x) =
kx +

√
k2x2 + 4
2

and t2(x) =
kx−

√
k2x2 + 4
2

.

Consequently if n ≥ 0 then the Binet formula for Fk
n(α, q; x) has the form

(4) Fk
n(α, q; x) =

α(1 + q)x− t2(x)
t1(x)− t2(x)

tn
1(x)− α(1 + q)x− t1(x)

t1(x)− t2(x)
tn
2(x).

In particular, for special values of k, α and q we obtain Binet formulas for Fibonacci
polynomials, Pell polynomials and k-Fibonacci polynomials, respectively. Let α(1 +
q) = k. Then

F1
n(α, q; x) =

tn+1
1 (x)− tn+1

2 (x)
t1(x)− t2(x)

,

where t1(x) = 1
2

(
x +
√

x2 + 4
)

and t2(x) = 1
2

(
x−
√

x2 + 4
)

;

F2
n(α, q; x) =

tn+1
1 (x)− tn+1

2 (x)
t1(x)− t2(x)

,

where t1(x) = x +
√

x2 + 1 and t2(x) = x−
√

x2 + 1;

Fk
n(α, q; x) =

tn+1
1 (x)− tn+1

2 (x)
t1(x)− t2(x)

,

where t1(x) =
kx +

√
k2x2 + 4
2

and t2(x) =
kx−

√
k2x2 + 4
2

.
Now we will give some identities such as Catalan identity, Cassini identity and

d’Ocagne identity for (k, α, q)-Fibonacci-Pell polynomials. These identities can be pro-

ved using Binet formula (4). For simplicity of notation let A =
α(1 + q)x− t2(x)

t1(x)− t2(x)
and

B =
α(1 + q)x− t1(x)

t1(x)− t2(x)
. Then we can write (4) as Fk

n(α, q; x) = Atn
1(x)− Btn

2(x).

Theorem 1.1. (Catalan identity for (k, α, q)-Fibonacci-Pell polynomials)
Let n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then for an integer k ≥ 1 and α, q ∈ R holds

Fk
n−r(α, q; x) · Fk

n+r(α, q; x)−
(

Fk
n(α, q; x)

)2
=

= ABtn
1(x)tn

2(x)
(

2−
(

t1(x)
t2(x)

)r

−
(

t2(x)
t1(x)

)r)
.
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Proof. For integers n ≥ 0, r ≥ 0 and n ≥ r we have

Fk
n−r(α, q; x) · Fk

n+r(α, q; x)−
(

Fk
n(α, q; x)

)2

=
(

Atn−r
1 (x)− Btn−r

2 (x)
)
·
(

Atn+r
1 (x)− Btn+r

2 (x)
)

− (Atn
1(x)− Btn

2(x))2

= 2ABtn
1(x)tn

2(x)− ABtn+r
1 (x)tn−r

2 (x)− ABtn−r
1 (x)tn+r

2 (x)

= ABtn
1(x)tn

2(x)
(

2−
(

t1(x)
t2(x)

)r

−
(

t2(x)
t1(x)

)r)
,

which ends the proof. �

Note that if r = 1 then we get Cassini identity for (k, α, q)-Fibonacci-Pell polynomials.

Corollary 1.2. (Cassini identity for (k, α, q)-Fibonacci-Pell polynomials)
Let n ≥ 0, k ≥ 1 be integers. Then for α, q ∈ R holds

Fk
n−1(α, q; x) · Fk

n+1(α, q; x)−
(

Fk
n(α, q; x)

)2
=

= ABtn
1(x)tn

2(x)
(

2− t1(x)
t2(x)

− t2(x)
t1(x)

)
.

Analogously as in Theorem 1.1 we can prove

Theorem 1.3. (d’Ocagne identity for (k, α, q)-Fibonacci-Pell polynomials)
Let m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then for an integer k ≥ 1 and α, q ∈ R holds

Fk
m(α, q; x) · Fk

n+1(α, q; x)− Fk
m+1(α, q; x) · Fk

n(α, q; x) =

= AB(t1(x)− t2(x)) (tm
1 (x)tn

2(x)− tn
1(x)tm

2 (x)) .

2. Generalizations of Fibonacci hybrinomials

In [12] Özdemir introduced the set of hybrid numbers denoted by K as a new gene-
ralization of complex, hyperbolic and dual numbers. The set K of hybrid numbers Z
has the form

K = {Z : Z = a + bi + cε + dh, a, b, c, d ∈ R,

i2 = −1, ε2 = 0, h2 = 1, ih = −hi = ε + i}.

Let Z1 = a1 + b1i + c1ε + d1h and Z2 = a2 + b2i + c2ε + d2h be two hybrid numbers.
Then

Z1 = Z2 if and only if a1 = a2, b1 = b2, c1 = c2, d1 = d2 (equality)
Z1 + Z2 = (a1 + a2) + (b1 + b2)i + (c1 + c2)ε + (d1 + d2)h (addition)
Z1 − Z2 = (a1 − a2) + (b1 − b2)i + (c1 − c2)ε + (d1 − d2)h (subtraction)
sZ1 = sa1 + sb1i + sc1ε + sd1h (multiplication by scalar s ∈ R).
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The hybrid numbers multiplication is made analogously as the multiplication of
algebraic expressions using rules for the multiplications of operators i, ε and h given
in Table 1.

· i ε h
i −1 1− h ε + i
ε h + 1 0 −ε
h −ε− i ε 1

Table 1. The hybrid number multiplication.
The multiplication of hybrid numbers is not commutative but it is associative. The

addition of hybrid numbers is commutative and associative. Zero 0 = 0 + 0i + 0ε + 0h
is the null element. With respect to the addition operation, the inverse element of Z is
−Z = −a− bi− cε− dh. Consequently (K,+) is an Abelian group. Moreover, (K,+, ·)
is non-commutative ring, with identity element 1 = 1 + 0i + 0ε + 0h.

In recent works special families of hybrid numbers related to the Fibonacci type
sequences were studied. In [14] Horadam hybrid numbers were introduced and conse-
quently their special cases related to the Fibonacci type numbers were investigated in
[5, 18, 19, 20].

For future investigations we recall that FHn = Fn + iFn+1 + εFn+2 + hFn+3 is the nth
Fibonacci hybrid number and PHn = Pn + iPn+1 + εPn+2 + hPn+3 is the nth Pell hybrid
number. Moreover based on (1) we define generalized Fibonacci hybrid numbers as
FHk

n = Fk
n + iFk

n+1 + εFk
n+2 + hFk

n+3 and we called FHk
n as the nth k-Fibonacci hybrid

number.
The Fibonacci type hybrinomials being a generalization of Fibonacci type hybrid

numbers were introduced recently in [16]. Results concerning Pell hybrinomials are
included in [10] and they are a sequel of the Fibonacci hybrinomials concept. The last
survey of these results is included in [15]. We recall that for n ≥ 0 the nth Fibonacci
hybrinomials FHn(x) are defined by

FHn(x) = Fn(x) + iFn+1(x) + εFn+2(x) + hFn+3(x)

where Fn(x) is the nth Fibonacci polynomial, and i, ε, h are hybrid operators. Analo-
gously nth Pell hybrinomials PHn(x) are defined by

PHn(x) = Pn(x) + iPn+1(x) + εPn+2(x) + hPn+3(x)

where Pn(x) is the nth Pell polynomial. In the same way we define nth k-Fibonacci
hybrinomial FHk

n(x) as

FHk
n(x) = Fk

n(x) + iFk
n+1(x) + εFk

n+2(x) + hFk
n+3(x).

Clearly FHn(1) = FHn, PHn(1) = PHn and FHk
n(1) = FHk

n, for k ≥ 1. For other
Fibonacci type hybrinomials and their properties see [15].

In this paper we define a wide generalization of Fibonacci hybrinomials, which in-
cludes also Fibonacci type hybrinomials not defined yet.

Online Journal of Analytic Combinatorics, Issue 15 (2020), #14
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Let k ≥ 1, n ≥ 0 be integers, α, q ∈ R. Then (k, α, q)-Fibonacci-Pell hybrinomials
FHk

n(α, q; x) are defined by

(5) FHk
n(α, q; x) = Fk

n(α, q; x) + iFk
n+1(α, q; x) + εFk

n+2(α, q; x) + hFk
n+3(α, q; x)

where Fk
n(α, q; x) is the nth (k, α, q)-Fibonacci-Pell polynomial, and i, ε, h are hybrid

operators.
For special values of k, α and q we obtain the special Fibonacci type hybrinomi-

als. Let α(1 + q) = k. Then FH1
n(α, q; x) = FHn+1(x), FH2

n(α, q; x) = PHn+1(x) and
FHk

n(α, q; x) = FHk
n+1(x). Moreover FH1

n(α, q; 1) = FHn+1, FH2
n(α, q; 1) = PHn+1 and

FHk
n(α, q; 1) = FHk

n+1.

Theorem 2.1. Let k ≥ 1 be an integer and α, q ∈ R. Then for any variable quantity x we have

FHk
n(α, q; x) = kx · FHk

n−1(α, q; x) + FHk
n−2(α, q; x) for n ≥ 2

with

FHk
0(α, q; x) = 1 + iα(1 + q)x + ε(α(1 + q)kx2 + 1)

+ h(α(1 + q)k2x3 + (α(1 + q) + k)x)
(6)

and

FHk
1(α, q; x) = α(1 + q)x + i(α(1 + q)kx2 + 1)

+ ε(α(1 + q)k2x3 + (α(1 + q) + k)x)

+ h(α(1 + q)k3x4 + (2α(1 + q) + k)kx2 + 1)

(7)

Proof. If n = 2 we have

FHk
2(α, q; x) = kx · FHk

1(α, q; x) + FHk
0(α, q; x)

= kx ·
[
α(1 + q)x + i(α(1 + q)kx2 + 1)

+ ε(α(1 + q)k2x3 + (α(1 + q) + k)x)

+h(α(1 + q)k3x4 + (2α(1 + q) + k)kx2 + 1)
]

+ 1 + iα(1 + q)x + ε(α(1 + q)kx2 + 1)

+ h(α(1 + q)k2x3 + (α(1 + q) + k)x)

= α(1 + q)kx2 + 1

+ i(α(1 + q)k2x3 + (α(1 + q) + k)x)

+ ε(α(1 + q)k3x4 + (2α(1 + q) + k)kx2 + 1)

+ h(α(1 + q)k4x5 + (3α(1 + q) + k)k2x3 + (α(1 + q) + 2k)x).
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If n ≥ 3 then using the definition of (k, α, q)-Fibonacci-Pell polynomials we have

FHk
n(α, q; x) = kx · Fk

n−1(α, q; x) + Fk
n−2(α, q; x)

+ i(kx · Fk
n(α, q; x) + Fk

n−1(α, q; x))

+ ε(kx · Fk
n+1(α, q; x) + Fk

n(α, q; x))

+ h(kx · Fk
n+2(α, q; x) + Fk

n+1(α, q; x))

= kx · FHk
n−1(α, q; x) + FHk

n−2(α, q; x)

which ends the proof. �

Theorem 2.2. (Binet formula for the (k, α, q)-Fibonacci-Pell hybrinomials)
Let n ≥ 0, k ≥ 1 be integers and α, q ∈ R. Then

FHk
n(α, q; x) =

=
α(1 + q)x− t2(x)

t1(x)− t2(x)
tn
1(x)

(
1 + it1(x) + εt2

1(x) + ht3
1(x)

)
− α(1 + q)x− t1(x)

t1(x)− t2(x)
tn
2(x)

(
1 + it2(x) + εt2

2(x) + ht3
2(x)

)
,

(8)

where t1(x) =
kx +

√
k2x2 + 4
2

and t2(x) =
kx−

√
k2x2 + 4
2

.

Proof. Using (4) and (5) we have

FHk
n(α, q; x)

= Fk
n(α, q; x) + iFk

n+1(α, q; x) + εFk
n+2(α, q; x) + hFk

n+3(α, q; x)

=
α(1 + q)x− t2(x)

t1(x)− t2(x)
tn
1(x)− α(1 + q)x− t1(x)

t1(x)− t2(x)
tn
2(x)

+ i
(

α(1 + q)x− t2(x)
t1(x)− t2(x)

tn+1
1 (x)− α(1 + q)x− t1(x)

t1(x)− t2(x)
tn+1
2 (x)

)
+ ε

(
α(1 + q)x− t2(x)

t1(x)− t2(x)
tn+2
1 (x)− α(1 + q)x− t1(x)

t1(x)− t2(x)
tn+2
2 (x)

)
+ h

(
α(1 + q)x− t2(x)

t1(x)− t2(x)
tn+3
1 (x)− α(1 + q)x− t1(x)

t1(x)− t2(x)
tn+3
2 (x)

)
and after calculations the result (8) follows. �

For simplicity of notation let
t̂1(x) = 1 + it1(x) + εt2

1(x) + ht3
1(x),

t̂2(x) = 1 + it2(x) + εt2
2(x) + ht3

2(x).
Then we can write (8) as FHk

n(α, q; x) = Atn
1(x)t̂1(x) − Btn

2(x)t̂2(x), where A =
α(1 + q)x− t2(x)

t1(x)− t2(x)
and B =

α(1 + q)x− t1(x)
t1(x)− t2(x)

. Using Binet formula (8) one can obtain
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Catalan identity, Cassini identity and d’Ocagne identity for (k, α, q)-Fibonacci-Pell hy-
brinomials.

Theorem 2.3. (Catalan identity for (k, α, q)-Fibonacci-Pell hybrinomials)
Let n ≥ 0, r ≥ 0 be integers such that n ≥ r. Then for integer k ≥ 1 and α, q ∈ R holds

FHk
n−r(α, q; x) · FHk

n+r(α, q; x)−
(

FHk
n(α, q; x)

)2
=

= ABtn
1(x)tn

2(x)
[(

1− tr
2(x)

tr
1(x)

)
t̂1(x)t̂2(x) +

(
1−

tr
1(x)

tr
2(x)

)
t̂2(x)t̂1(x)

]
.

Proof. For integers n ≥ 0, r ≥ 0 and n ≥ r we have

FHk
n−r(α, q; x) · FHk

n+r(α, q; x)−
(

FHk
n(α, q; x)

)2

=
(

Atn−r
1 (x)t̂1(x)− Btn−r

2 (x)t̂2(x)
)
·
(

Atn+r
1 (x)t̂1(x)− Btn+r

2 (x)t̂2(x)
)

−
(

Atn
1(x)t̂1(x)− Btn

2(x)t̂2(x)
)
·
(

Atn
1(x)t̂1(x)− Btn

2(x)t̂2(x)
)

= −Atn−r
1 (x)Btn+r

2 (x)t̂1(x)t̂2(x) + Atn
1(x)Btn

2(x)t̂1(x)t̂2(x)

− Btn−r
2 (x)Atn+r

1 (x)t̂2(x)t̂1(x) + Btn
2(x)Atn

1(x)t̂2(x)t̂1(x)

= −ABtn
1(x)tn

2(x)t−r
1 (x)tr

2(x)t̂1(x)t̂2(x) + ABtn
1(x)tn

2(x)t̂1(x)t̂2(x)

− ABtn
1(x)tn

2(x)tr
1(x)t−r

2 (x)t̂2(x)t̂1(x) + ABtn
1(x)tn

2(x)t̂2(x)t̂1(x)

= ABtn
1(x)tn

2(x)t̂1(x)t̂2(x)
(

1− tr
2(x)

tr
1(x)

)
+ ABtn

1(x)tn
2(x)t̂2(x)t̂1(x)

(
1−

tr
1(x)

tr
2(x)

)
= ABtn

1(x)tn
2(x)

[(
1− tr

2(x)
tr
1(x)

)
t̂1(x)t̂2(x) +

(
1−

tr
1(x)

tr
2(x)

)
t̂2(x)t̂1(x)

]
,

which ends the proof. �

For r = 1 we obtain Cassini type identity for (k, α, q)-Fibonacci-Pell hybrinomials.

Corollary 2.4. (Cassini identity for (k, α, q)-Fibonacci-Pell hybrinomials)
Let n ≥ 0, k ≥ 1 be integers. Then for α, q ∈ R holds

FHk
n−1(α, q; x) · FHk

n+1(α, q; x)−
(

FHk
n(α, q; x)

)2
=

= ABtn
1(x)tn

2(x)
[(

1− t2(x)
t1(x)

)
t̂1(x)t̂2(x) +

(
1− t1(x)

t2(x)

)
t̂2(x)t̂1(x)

]
.
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Theorem 2.5. (d’Ocagne identity for (k, α, q)-Fibonacci-Pell hybrinomials)
Let m ≥ 0, n ≥ 0 be integers such that m ≥ n. Then for integer k ≥ 1 and α, q ∈ R holds

FHk
m(α, q; x) · FHk

n+1(α, q; x)− FHk
m+1(α, q; x) · FHk

n(α, q; x) =

= ABtm
1 (x)tn

2(x)t̂1(x)t̂2(x) (t1(x)− t2(x))

− ABtn
1(x)tm

2 (x)t̂2(x)t̂1(x) (t1(x)− t2(x)) .

Proof. For integers m ≥ 0, m ≥ 0 and m ≥ n we have

FHk
m(α, q; x) · FHk

n+1(α, q; x)− FHk
m+1(α, q; x) · FHk

n(α, q; x)

=
(

Atm
1 (x)t̂1(x)− Btm

2 (x)t̂2(x)
)
·
(

Atn+1
1 (x)t̂1(x)− Btn+1

2 (x)t̂2(x)
)

−
(

Atm+1
1 (x)t̂1(x)− Btm+1

2 (x)t̂2(x)
)
·
(

Atn
1(x)t̂1(x)− Btn

2(x)t̂2(x)
)

= −Atm
1 (x)Btn+1

2 (x)t̂1(x)t̂2(x) + Atm+1
1 (x)Btn

2(x)t̂1(x)t̂2(x)

− Btm
2 (x)Atn+1

1 (x)t̂2(x)t̂1(x) + Btm+1
2 (x)Atn

1(x)t̂2(x)t̂1(x)

= −ABtm
1 (x)tn

2(x)t2(x)t̂1(x)t̂2(x) + ABtm
1 (x)tn

2(x)t1(x)t̂1(x)t̂2(x)

− ABtn
1(x)tm

2 (x)t1(x)t̂2(x)t̂1(x) + ABtn
1(x)tm

2 (x)t2(x)t̂2(x)t̂1(x)

= ABtm
1 (x)tn

2(x)t̂1(x)t̂2(x) (t1(x)− t2(x))

− ABtn
1(x)tm

2 (x)t̂2(x)t̂1(x) (t1(x)− t2(x)) ,

which ends the proof. �

Theorem 2.6. The generating function for the (k, α, q)-Fibonacci-Pell hybrinomial sequence
{FHk

n(α, q; x)} is

G(t) =
FHk

0(α, q; x) +
(

FHk
1(α, q; x)− FHk

0(α, q; x)kx
)

t
1− kxt− t2 ,

where FHk
0(α, q; x) and FHk

1(α, q; x) are given by (6) and (7).

Proof. Assume that the generating function of the (k, α, q)-Fibonacci-Pell hybrinomial

sequence {FHk
n(α, q; x)} has the form G(t) =

∞
∑

n=0
FHk

n(α, q; x)tn. Then

G(t) = FHk
0(α, q; x) + FHk

1(α, q; x)t + FHk
2(α, q; x)t2 + . . .

Multiply the above equality on both sides by −kxt and then by −t2 we obtain

−G(t)kxt = −FHk
0(α, q; x)kxt− FHk

1(α, q; x)kxt2 − FHk
2(α, q; x)kxt3 − . . .

−G(t)t2 = −FHk
0(α, q; x)t2 − FHk

1(α, q; x)t3 − FHk
2(α, q; x)t4 − . . .

By adding the three equalities above, we will get

G(t)(1− kxt− t2) = FHk
0(α, q; x) +

(
FHk

1(α, q; x)− FHk
0(α, q; x)kx

)
t
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since FHk
n(α, q; x) = kx · FHk

n−1(α, q; x) + FHk
n−2(α, q; x) and the coefficients of tn for

n ≥ 2 are equal to zero. This ends the proof. �

Matrix generators are a complement to the theory of (k, α, q)-Fibonacci-Pell hybrino-
mials.

Theorem 2.7. Let n ≥ 0, k ≥ 1 be integers. Then for α, q ∈ R holds[
FHk

n+2(α, q; x) FHk
n+1(α, q; x)

FHk
n+1(α, q; x) FHk

n(α, q; x)

]
=

=

[
FHk

2(α, q; x) FHk
1(α, q; x)

FHk
1(α, q; x) FHk

0(α, q; x)

]
·
[

kx 1
1 0

]n

.

Proof. (by induction on n)
If n = 0 then assuming that the matrix to the power 0 is the identity matrix the result
is obvious. Now assume that for any n ≥ 0 holds[

FHk
n+2(α, q; x) FHk

n+1(α, q; x)
FHk

n+1(α, q; x) FHk
n(α, q; x)

]
=

=

[
FHk

2(α, q; x) FHk
1(α, q; x)

FHk
1(α, q; x) FHk

0(α, q; x)

]
·
[

kx 1
1 0

]n

.

We shall show that [
FHk

n+3(α, q; x) FHk
n+2(α, q; x)

FHk
n+2(α, q; x) FHk

n+1(α, q; x)

]
=

=

[
FHk

2(α, q; x) FHk
1(α, q; x)

FHk
1(α, q; x) FHk

0(α, q; x)

]
·
[

kx 1
1 0

]n+1

.

By simple calculation using induction’s hypothesis we have[
FHk

2(α, q; x) FHk
1(α, q; x)

FHk
1(α, q; x) FHk

0(α, q; x)

]
·
[

kx 1
1 0

]n

·
[

kx 1
1 0

]

=

[
FHk

n+2(α, q; x) FHk
n+1(α, q; x)

FHk
n+1(α, q; x) FHk

n(α, q; x)

]
·
[

kx 1
1 0

]

=

[
kx · FHk

n+2(α, q; x) + FHk
n+1(α, q; x) FHk

n+2(α, q; x)
kx · FHk

n+1(α, q; x) + FHk
n(α, q; x) FHk

n+1(α, q; x)

]

=

[
FHk

n+3(α, q; x) FHk
n+2(α, q; x)

FHk
n+2(α, q; x) FHk

n+1(α, q; x)

]
,

which ends the proof. �
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Conclusion

Numbers of the Fibonacci type have many interesting applications in different bran-
ches of mathematics not only in combinatorics and number theory and what is interest-
ing also in the theory of complex variables, see for example [13], where using a special
q-derivative operator a new class of q-starlike functions associated with generalized-
Fibonacci numbers was defined and studied. In spite of hybrid numbers and hybrino-
mials were introduced quite recently their connections with numbers of the Fibonacci
type also are intensively studied. Related to results obtained in [4] and [17] it seem to
be interesting to consider also Mersenne hybrinomials and their properties.
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