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ABSTRACT.

Let R be a commutative ring with unity and M be an R-module. The total graph of
M with respect to the singular submodule Z(M) of M is an undirected graph T(I'(M))
with vertex set as M and any two distinct vertices x and y are adjacent if and only if
x+y € Z(M). In this paper the author attempts to study the domination in the graph
T(I'(M)) and investigate the domination number and the bondage number of T(I'(M))
and its induced subgraphs. Some domination parameters of T(I'(M)) are also studied.
It has been showed that T(I'(M)) is excellent, domatically full and well covered under
certain conditions.
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1. INTRODUCTION

In 1988, Beck [6] opened up the fascinating insight which relates a graph with the
algebraic structure of a ring by introducing the zero-divisor graph of a commutative
ring. He was mostly interested in colorings of this graph. This introduction was slightly
modified later on by Anderson and Naseer in [2]. Further modification to the concept
of the zero-divisor graph was made by Anderson and Livingston in [4]. Many au-
thors studied the zero-divisor graph as Anderson-Livingston did in [4]. Since then, the
concept of zero-divisor graphs of rings have played a vital role. Motivating from this
well expanded idea of Beck, lots of correspondences of graph with algebraic structures
have been introduced with variety of applications. Some of them are total graph of
a commutative ring by Anderson and Badawi [3], total graph and regular graph of a
commutative ring by Akbari [1], total graph of a finite commutative ring by Shekarriz
[15] etc.

In 2008, Anderson and Badawi [3] defined the total graph of a commutative ring R
as an undirected graph with vertex set R with any two vertices are adjacent if and only
if their ring sum is a zero divisor of R. In that paper, they discussed the characteristics
of total graphs and two of their induced subgraphs by considering two cases, namely,
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the set of zero divisors Z(R) of R is an ideal of R and Z(R) is not an ideal of R. There-
after, the idea of the total graph has been generalised to many algebraic structures. The
author in [9] introduced the notion of singularity of a module over a ring and defined
the total graph of a module M with respect to singular submodule Z(M). The line
graph of the total graph of a module has also been studied in [10]. Before going to our
discussion we recall the following.

Let R be a commutative ring. An element x of R is called a zero-divisor of R if there
exists a non-zero element y of R with xy = 0. The collection of all zero-divisors of R is
denoted by Z(R), and henceforth, we use it. An ideal I of R is an essential ideal if its
intersection with any non-zero ideal of R is non-zero. For an R-module M, let Z(M)
be the set of those x € M for which the ideal {r € R|xr = 0} is essential in R, i.e.,
Z(M) = {x € M|xI = 0, for some essential ideal I of R}. Then Z(M) is a submod-
ule of M, called the singular submodule of M. A module M is said to be singular if
Z(M) = M. On the other hand M is non-singular if Z(M) = 0. For any undefined
terminology in rings and modules we refer to [5], [8] and [14].

By a graph G, we mean a simple undirected graph without loops. For a graph G,
we denote by V(G) and E(G) the set of all vertices and edges respectively. We recall
that a graph is finite if both V(G) and E(G) are finite sets, and we use the symbol |G|
to denote the number of vertices in the graph G. A graph G is complete if any two
distinct vertices are adjacent. We denote the complete graph on n vertices by K;,. If the
vertex set V(G) of the graph G are partitioned into two non-empty disjoint sets X and
Y of cardinality |X| = m and |Y| = n, and two vertices are not adjacent if they are in
the same partite set, then G is called a bipartite graph. A graph G is called a complete
bipartite graph if every vertex in X is connected to every vertex in Y. We denote the
complete bipartite graph on m and n vertices by K, .

For a subset S C V(G), < S > denotes the subgraph of G induced by S. For a vertex
v € V(G), deg(v) is the degree of the vertex v, N(v) = {u € V(G) | u is adjacent to v}
and N[v] = N(v) U {v}. A subset S of V(G) is called a dominating set if every vertex
in V(G) — S is adjacent to atleast one vertex in S. A dominating set S is called a strong
(or weak) dominating set if for every vertex u € V(G) — S there is a vertex v € S with
deg(v) > deg(u) (or deg(v) < deg(u)) and u is adjacent to v. The domination number
7(G) of G is defined to be minimum cardinality of a dominating set in G and such a
dominating set is called y-set of G. In a similar way, we define the strong domination
number s and the weak domination number ;. A graph G is called excellent if for
every vertex v € V(G), there exists a y-set S containing v. A domatic partition of G is
a partition of V(G) into dominating sets in G. The maximum number of classes of a
domatic partition of G is called the domatic number of G and is denoted by d(G). A
graph G is called domatically full if d(G) = 6(G) + 1, which is the maximum possible
order of a domatic partition of V(G) where 6(G) is the minimum degree of a vertex of
G. The disjoint domination number 7y (G) defined by vy(G) =min{|S1| + |S2| : 51,52
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are disjoint dominating sets of G}. Similarly, we can define ii(G) and 7i(G). The
double domination parameters are referred to [11]. The bondage number b(G) is the
minimum number of edges whose removal increases the domination number. A set of
vertices S C V(G) is said to be independent if no two vertices in S are adjacent in G.
The independence number By (G), is the maximum cardinality of an independent set in
G. A graph G is called well-covered if Bo(G) = i(G). For basic definitions and results
in domination we refer to [12] and for any undefined graph-theoretic terminology we
refer to [7].

The concepts of dominating sets and domination numbers are very important termi-
nology of graph theory. Dominating sets are the focus of many books of graph theory,
for example see[12] and [13]. But not much research has been done about the domina-
tion parameters of graphs associated to algebraic structures such as groups, rings, or
modules in terms of algebraic properties. Recently, Chelvam and Asir [17] studied the
domination in the total graph of a commutative ring. The domination number of total
graph of module has been studied in [16].

Throughout this paper R is a commutative ring with unity and M is an R-module.
The author [9] has introduced the total graph of M with respect to Z(M), denoted by
T(T'(M)), to be an undirected graph with all elements of M as vertices, and for distinct
x,y € M, the vertices x and y are adjacent, written x adj y if and only if x +y € Z(M).
Let Z(M) = M — Z(M). Let Z(T'(M)) be the (induced) subgraph of T(I'(M)), with
vertices Z(M), and let Z(T'(M)) be the (induced) subgraph of T(I'(M)) with vertices
Z(M).

In this paper the author attempts to study the domination in the graph T(I'(M)) and
investigate the domination number and the bondage number of T(I'(M)) and its in-
duced subgraphs Z(I'(M)) and Z(T'(M)). Some domination parameters of T(T'(M))
are also studied. It has been showed that T(I'(M)) is excellent, domatically full and
well covered under certain conditions.

2. EXAMPLES

There are certain classes of graphs whose dominating sets and domination num-
bers are clear. For instance, we state some of them in the following example, where
their proofs are straightforward.

Example 1:

(i) If G is a graph of order n, then 1 < 9(G) < n. A graph G of order n has
domination number 1 if and only if G contains a vertex v of degree n — 1; while
v(G) = n if and only if G = K.
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(ii) v(Kyx) =1 for a complete graph K, but the converse is not true, in general and
v(Ky) = n for a null graph K,,.
(iii) Let G be a complete r-partite graph (r > 2) with partite sets Vi, V,..., V. If
|Vi| > 2for1 < i <r, then 97(G) = 2; because one vertex of V; and one vertex
of V, dominate G. If |V;| = 1 for some i, then ¢(G) = 1.
(iv) v(Ky,,) =1 for a star graph Kj .
(v) If G is a partition of disjoint subgraphs G, Gy, ..., Gk, then y(G) = v(G1) +
7(G2) + . + 7 (Gy).
(vi) Domination number of a bistar graph is 2; because the set consisting of two
centres of the graph is a minimal dominating set.
(vii) Let C,, and P, be a n-cycle and a path with n vertices, respectively. Then y(C,) =

HE)

3. DOMINATION NUMBER OF THE GRAPH T(I'(M)) AND ITS INDUCED SUBGRAPHS

As mentioned in the introduction the author [9] has introduced the total graph

of M with respect to singular submodule Z(M), denoted by T(I'(M)), to be an undi-
rected graph with all elements of M as vertices, and for distinct x,y € M, the vertices
x and y are adjacent, written x adj y if and only if x +y € Z(M). Let Z(T'(M)) be the
(induced) subgraph of T(I'(M)), with vertices Z(M), and let Z(T'(M)) be the (induced)
subgraph of T(I'(M)) with vertices Z(M).
In this section, an attempt has been made to study the domination properties of the
graph T(T'(M)). In particular, the domination number of T(I'(M)) and its induced
subgraphs Z(I'(M)) and Z(T'(M)) have been determined. An equivalent condition
describing relationship between the domination number of T(I'(M)) and the same of
Z(T'(M)) has also been established.

We begin with the following examples.

Example 3.1:

Let R = Zg be the ring of integers modulo 8 and M = Z, be the module of integers
modulo 4. Then the essential ideals of R are I = {0,2,4,6} and R itself. We have
Z(M) = {0,2} and therefore Z(M) = {1,3}.

Now we can easily observe that the induced subgraphs Z(I'(M)) and Z(T'(M)) are K
each. Thus, we have 7(Z(T'(M))) = 7(Z(I'(M))) = 1.

Also, we can see that the total graph T(I'(M)) is the union of two disjoint K,'s. Clearly,
{0,1} is a y-set of T(I'(M)). Hence, we have 7(T(I'(M))) = 2. Here, {2,3} is another
v-set of T(T'(M)).

Example 3.2:
Let R = Z4 be the ring of integers modulo 4 and M = Zg be the module of integers
modulo 8. Then M is an R-module with the usual operations, and Z(M) = {0,2,4,6}.
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Thus Z(M) = {1,3,5,7}.

Now we can see that the induced subgraphs Z(T'(M)) and Z(I'(M)) are K4 each. Thus,
we have 7(Z(T(M))) = 7(Z(T(M))) = 1.

Also, we observe that the total graph T(I'(M)) is the union of two disjoint K4's with
{4,5} is one of the y-sets of T(I'(M)). Hence, we have y(T(T'(M))) = 2.

Theorem 3.3:[9]
Let R be a ring and M be an R-module. Then the following hold:
(1) Z(T'(M)) is a complete (induced) subgraph of T(I'(M)) and Z(I'(M)) is disjoint
from Z(T'(M)).
(2) If N is a submodule of M, then T(I'(N)) is an (induced) subgraph of T(I'(M)).

Proposition 3.4:
Let R be a ring and M be an R-module. Then the following hold:

(1) ¥(Z(I(M))) = 1.
(2) ¥(T(T'(M))) = 1if M is singular.

Proof.

(1) As Z(T'(M)) is a complete by Theorem 3.3(1), so we have v(Z(I'(M))) =
(2) If M is singular then Z(M) = M and so T(I'(M)) = Z(I'(M)) which y1e1ds
T(T'(M)) is complete. Thus we have v(T(I'(M))) = 1.

The next theorem gives a complete description of T(I'(M)). If we allow « and f to be

_ (-1 _
1= o= =5

infinite, then of course § —

Theorem 3.5:[9]
Let R be a ring and M be an R-module such that |Z(M)| = « and

M
| P
(1) If 2 = 1g + 1g € Z(R) then Z(I'(M)) is the union B — 1 disjoint K,s.
(2) If 2 = 1g + 1g ¢ Z(R) then Z(I'(M)) is the union of b ; L disjoint Ky 4 's.

Proposition 3.6:

Let R be a ring and M be an R-module such that |[Z(M)| = « and ‘%‘ = B, then
1(T(T(M))) = B.

Proof.

Let us consider the following two cases for Z(R) .

Case 1: Suppose that 2 = 1g + 1z € Z(R). Then we have from Theorem 3.5(1) that
the graph Z(T'(M)) is the union g — 1 disjoint K,’s and we know that (K, ) = 1. Thus
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v(Z(T(M))) = B — 1 and by Proposition 3.4 we have (Z(T(M))) = 1. consequently

7(T(TM))) = 7(Z([T(M))) +7(Z(T(M))) =1+p—1=8.
Case 2: Suppose that 2 = 1g + 1g ¢ Z(R).Then again we have from Theorem 3.5(2) that

— —1
the graph Z(T'(M)) is the union of p

disjoint K, ,'s and we know that y(Ky ) = 2.

Thus y(Z(T(M))) b ; ! x 2 = B — 1 and by Proposition 3.4 we have y(Z(I'(M))) =

L So, y(T(I'(M))) = v(Z(T(M))) +7(2(T(M))) =1+ -1 =p.
Proposition 3.7:
Let R be a ring and M be a non-zero and non-singular R-module such that |Z(M)| = «

and ’ — B, then 4(T(T(M))) = ?

M
Z(M)
Proof.

Since M is non-singular, we have Z(M) = 0. Therefore,

M
m’ = |M| = B. Now,

we show that Z(R) = 0. Let 0 # x € Z(R), then there exist 0 # y € R such that
xy = 0. Let us consider an element 0 # m € M, and we have (xy)m = 0 which yields
x(ym) = 0. Then ym = 0 as x # 0 which yields either y = 0 or m = 0, a contradiction.
Therefore, Z(R) = 0. So, 2 = 1g +1g ¢ Z(R) and from Theorem 3.5(2) we have
the graph Z(T'(M)) is the union of p-

v(Z(T(M))) = 1. Therefore we will have y(T(T'(M))) = y(Z(T(M))) +v(Z(T(M))) =

1+(%)x1:¥.

disjoint Kj1’s and by Proposition 3.4 we have

4. SOME DOMINATION PARAMETERS OF T(I'(M))

In this section, some domination parameters of T(I'(M)) has been studied. The
bondage number of T(I'(M)) has also been determined. Finally, it has been proved
that T(I'(M)) is excellent, domatically full and well covered under some conditions.

We begin with the following proposition.

Proposition 4.1:

Let R be a ring and M be an R-module such that |Z(M)| = « and ‘%‘ = B. A set
S = {x1,%2,...,xg} C V(T(I'(M))) is a y-set of T(I'(M)) if and only if x; & x; + Z(M)
foralll <i,j<Bandi #j.

Proof.
The if part follows directly from Proposition 3.6 as v(T(I'(M))) = B.
Conversely, let S be a y-set of T(I'(M)). Let us assume that there exist j,k € {1,2, ..., B}
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such that x; € x; + Z(M). Since |S| = B, there exist a coset x + Z(M) such that
x; € x +Z(M) for all x; € S. Now, the vertices in —x + Z(M) cannot be dominated by
S, a contradiction.

Theorem 4.2:[9]
Let R be a ring and M be an R-module. Let x be a vertex of the graph T(I'(M)). Then

Z(M)| -1, if2¢€ Z(R)and x € Z(M)
|Z(M)|, otherwise.

deg(x) = {

Proposition 4.3:

Let R be a ring and M be an R-module such that |Z(M)| = a« and ‘%‘ = B, then
(1) T(T(M)) is excellent.
(2) the domatic number d(T(I'(M))) = a.
(3) T(I'(M)) is domatically full.

Proof.

By Proposition 3.6 we have v(T(I'(M))) = B.

The proof of (1) and (2) are trivial.

(3) By (2) we have d(T(T'(M))) = a« = |Z(M)|. Also, we have by Theorem 4.2 that
5(T(T(M))) =|Z(M)| —1 = a — 1. Therefore, we have d(T(I'(M))) = 6(T(T'(M))) + 1.
Hence, T(I'(M)) is domatically full.

We now find the bondage number of the graph T(I'(M)). We begin with the following
example.

Example 2:

(i) If G is a simple graph of order 1, then 1 < b(G) <n —1.
(i) b(K,) = n —1 for a complete graph K,,, but the converse is not true, in general
and b(K,) = 0 for a null graph K,,.
(iii) Let G be a complete r-partite graph with partite sets Vi, V3, ..., V;. Then b(G) =
min{| V1|, |Va|, ..., |V¢|}. In particular, b(Ky, ) = min{m,n}.
(iv) If G is a partition of disjoint subgraphs Gy, Gy, ..., G, then

b(G) = min{b(G1),b(Ga), .., b(Gy) }-

(v) Let C, and P, be a n-cycle and a path with n vertices, respectively. Then b(P,) =
1and b(C,) = 2.

Online Journal of Analytic Combinatorics, Issue 15 (2020), #03
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Proposition 4.4:
Let R be a ring and M be an R-module such that |[Z(M)| = « and ‘
b(T(T(M))) =a—1.

M
m‘ = B, then

Proof.

Suppose that 2 = 1g + 1g € Z(R). Then, by Theorem 3.5(1), the graph Z(T'(M)) is the
union of B — 1 disjoint K,’s and we know that b(K,) = a — 1. Hence b(Z(T(M))) =

a — 1. Also Z(T'(M)) is complete, by Theorem 3.3(1) . Thus, b(Z(T'(M))) = a — 1. On
the other hand, Z(T(M)) and Z(T'(M)) are disjoint, by Theorem 3.3(1) . Therefore,
b(T(T(M))) =a—1.

Now, suppose that 2 = 1g + 1g ¢ Z(R). Then, by Theorem 3.5(2), Z(T

(
union of p ; ! disjoint K, ,’s and we know that b(K, 4 ) = a. Thus b(Z(T (M)
b

Z(T(M)) is complete and disjoint from Z(I'(M)), by Theorem 3.3(1) . So,
and hence b(T(I'(M))) is equal to a« — 1.

M)) is the
) = . But

Z(T(M)))

)
(

Lemma 4.5: M
Let M be a finite module over a ring R such that |Z(M)| = « and ‘m‘ = B. Then
(Ky UK, UKy U... UK,, if 2 € Z(R)

([3—1)Vcopies
T(F(M)) — < K[X U {<a/a U Kﬂ(,ﬂ( U ees U Ka/gi, if 2 ¢ Z(R).

(£
—~— | copies
L 2

It follows from Theorem 3.5 directly.

Proof.

Proposition 4.6:
M
Let M be a finite module over a ring R such that |Z(M)| = « and '—M' = B. Then
T(T'(M)) is well covered.
Proof.

If 2 € Z(R), then by Lemma 4.5 we have i(T(I'(M))) = B.
If 2 ¢ Z(R), then all the vertices in one partition of K, , together with a vertex of Z(M),

form an i-set of T(I'(M)) and so i(T(T'(M))) = (?) a + 1. Similarly Bo(T(T'(M)))
is same as i(T(I'(M))). Thus
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B, if 2 € Z(R)
(T(C(M))) = Bo(T(I'(M))) = {

(E) a+1, otherwise.
Hence, T(I'(M)) is well covered.

Corollary 4.7:
Let M be a finite module over a ring R such that |Z(M)| = &, then w(T(T'(M))) = a.

As proved above, we can prove the following.

Proposition 4.8:

Let M be a finite module over a ring R such that |Z(M)| = « and ‘i‘ = B. Then
1)

1(T(T(M))) = {2[1 1 i)ftkzlefvflif)

@) (T(T(M))) = 7(T(T(M))) = 6.
(3) 7,(T(T(M))) = B.

Proposition 4.9:

M
Let M be a finite module over a ring R such that |Z(M)| = « and ‘—‘ = B. Then

Z(M)
(1) ry(T(T(M))) = 2.
(2)
| 2B, if2 € Z(R)
'YZ(T(F(M))) = {‘B + (?) a+1, otherwise.

@)

) (28, if2 € Z(R)
i(T(T(M))) = {(ﬁ —1)a+2, otherwise.

(4)
4B, if2€ Z(R) and a > 4
t(T(T(M))) =12(B+1), if 2 ¢ Z(R)
does not exist, otherwise.

Online Journal of Analytic Combinatorics, Issue 15 (2020), #03
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