
HUB EDGE-INTEGRITY OF GRAPHS

SULTAN SENAN MAHDE AND VEENA MATHAD

Abstract. The hub-integrity of a graph is given by the minimum of |S|+ m(G − S),
where S is a hub set and m(G− S) is the maximum order of the components of G− S.
In this paper, the concept of hub edge-integrity is introduced as a new measure of
the stability of a graph G and it is defined as HEI(G) = min{|S|+ m(G− S)}, where
S is an edge hub set and m(G − S) is the order of a maximum component of G − S.
Furthermore, an HEI− set of G is any set S for which this minimum is attained.
Several properties and bounds on the HEI are presented, and the relationship between
HEI and other parameters is investigated. The HEI of some classes of graphs is also
computed.

1. Introduction

The integrity of a graph measures the reliability of a communication network. If
the network is modeled by a graph, then the integrity measures how easy it is to
cut the graph (or the network) into several small pieces by deleting as few vertices
as possible. Formally, the integrity of a graph G with vertex set V is defined as
I(G) = min{|S| + m(G − S) : S ⊆ V(G)}, where m(G − S) denotes the order of
the largest component. In the most significant variation of integrity, edges rather
than vertices are destroyed. Formally, the edge-integrity of a graph G is defined as
I′(G) = min{|S| + m(G − S) : S ⊆ E(G)}, where m(G − S) denotes the order of
the largest component. Both types of integrity were introduced by Barefoot, Entringer
and Swart [3]. For more about integrity and edge-integrity one can see [1, 2]. Suppose
that H ⊆ V(G) and let x, y ∈ V(G). An H-path between x and y is a path where
all intermediate vertices are from H. (This includes the degenerate cases where the
path consists of the single edge xy or a single vertex x if x = y, call such an H-
path trivial). A set H ⊆ V(G) is a hub set of G if it has the property that, for any
x, y ∈ V(G)− H, there is an H-path in G between x and y [20]. Hub-integrity was
introduced by Sultan, Veena and Ali [12] as an alternative measure of the vulnerability
of graphs to disruption caused by the removal of vertices. It is defined as HI(G) =
min{|S|+ m(G− S), S is a hub set o f G}, where m(G− S) is the order of a maximum
component of G− S. For more details see [13, 14, 16].

By a graph G = (V, E), we mean a finite undirected graph without loops or multiple
edges, with vertex set V(G) = {v1, v2, ..., vp}. We use p to denote the number of
vertices and q to denote the number of edges of a graph G. We refer to [4, 7] for
terminology and notations not defined here. In general, the degree of a vertex v
in a graph G denoted by deg(v) is the number of edges of G incident with v. The
maximum (minimum) degree among the vertices of G is denoted by ∆(G), (δ(G)). A

2010 Mathematics Subject Classification. 05C40, 05C99, 05C76.
Key words and phrases. Vulnerability, Integrity, Hub-integrity, Edge hub set, Hub edge-integrity.

1



2 SULTAN SENAN MAHDE AND VEENA MATHAD

vertex of degree one is called a pendant and its neighbor is called a steam. A steam
x of G is called a strong steam if x is adjacent to at least deg(x)− 1 pendants in G.
An edge of a graph G is said to be pendant if one of its vertices is a pendant vertex.
A bridge is an edge removing which increases number of disconnected components.
The minimum number of edges in an edge cover of G ( i.e., the edge cover number
) is denoted as α1(G) and the maximum number of edges in an independent set of
edges of G (i.e., the edge independence number) by β1(G). The symbols α(G), κ(G),
λ(G), χ(G) and β(G) denote the vertex cover number, the connectivity, the edge-
connectivity, the chromatic number and the independence number of G, respectively.
A set S ⊆ V(G) is called a dominating set of G if each vertex of V − S is adjacent to
at least one vertex of S. The domination number of a graph G, denoted as γ(G) is the
minimum cardinality of a dominating set in G [8].

The complement G of a graph G has V(G) as its vertex set, two vertices are adjacent
in G if and only if they are not adjacent in G [7].

The line graph L(G) of G has the edges of G as its vertices which are adjacent in
L(G) if and only if the corresponding edges are adjacent in G [7]. dxe is the smallest
integer greater than or equal to x. bxc is the greatest integer less than or equal to
x. The degree of an edge (u, v) ∈ E(G) is defined to be deg(u) + deg(v)− 2, ∆′(G)
denotes the maximum degree among the edges of G. The double star graph Sn,m
is the graph constructed from K1,n−1 and K1,m−1 by joining their centers v0 and u0.
That is, V(Sn,m) = V(K1,n−1) ∪ V(K1,m−1) and E(Sn,m) = {v0u0, v0vi, u0uj : 1 ≤ i ≤
n− 1, 1 ≤ j ≤ m− 1} [6]. A broom graph Bp,d consists of a path Pd, together with
(p− d) pendant vertices all adjacent to the same pendant vertex of Pd [17]. A spider
graph Gs is a tree which is constructed by subdividing each edge once in K1,p−1, p ≥ 3
[5]. In the present work, the basic properties of hub edge-integrity and of HEI−sets,
are explored, and bounds as well as relationships between hub edge-integrity and
other graph parameters are considered. Finally, the hub edge-integrity of families of
some trees are determined.

The following results are needed to prove the main results.

Theorem 1.1. [7] For any graph G, κ(G) ≤ λ(G) ≤ δ(G).

Lemma 1.1. For any graph G, β1(G) ≤ α(G).

Theorem 1.2. [12] For any graph G, HI(G) ≥ χ(G).

2. Main results

Let e = (u, v) and f = (u′, v′). A path between the two edges e and f is a
path between one end vertex of e and another end vertex of f such that d(e, f ) =
min{d(u, u′), d(u, v′), d(v, u′), d(v, v′)}. The internal edges of a path between two
edges e and f are all the edges of the path except e and f . Suppose that S ⊆ E(G). An
S-path between edges e and f is a path for which all its edges except e and f are in S.
(This definition allows for the cases when the path contains only two adjacent edges
or single edge. In such cases, the S-path is trivial.) Here a new concept is introduced,
namely, an edge hub set. A subset S ⊆ E(G) is called an edge hub set of G if every
pair of edges e, f ∈ E − S is connected by a path where all internal edges are from
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S. The minimum cardinality of an edge hub set is called the edge hub number of G,
and is denoted by he(G). Some studies on edge hub number were found in the papers
[9, 10] If G is a disconnected graph then any edge hub set must contain all of the edges
in all but one of the components, as well as an edge hub set in the remaining compo-
nent. We have integrated the concepts of edge hub set and edge-integrity to get a new
concept. Motivated by this, we introduce hub edge-integrity as a new measure of the
stability of a graph G called the hub edge-integrity of a graph G, denoted by HEI(G),
defined as HEI(G) = min{|S|+m(G− S), S is an edge hub set o f G}, where m(G− S)
is the order of a maximum component of G− S. Any set S ⊆ E(G) with the property
that |S| + m(G − S) = HEI(G) is called an HEI− set of G. For any disconnected
graph G having k components G1, G2, ....., Gk of sizes q1, q2, ......, qk−1, qk, respectively,
then any an HEI(G)-set must be union of the set of all edges belonging to all compo-
nents except one component and the HEI-set of the remaining component. For more
details we refer the reader to [15]. The definition shows that HEI(G) ≥ I′(G). This
bound is sharp for G ∼= K1,p−1.
The following result is the straight forward consequence of the definition of hub edge-
integrity.

Proposition 2.1.

(a): For any complete graph Kp, p ≥ 3, HEI(Kp) = 2p− 3.
(b): For any path Pp with p ≥ 4, HEI(Pp) = p− 1.
(c): For any cycle Cp, p ≥ 3,

HEI(Cp) =

{
p, if p = 3, 4, 5 ;
p− 1, if p ≥ 6.

(d): For the star K1,p−1, HEI(K1,p−1) = p.
(e): For the double star Sn,m, HEI(Sn,m) = 1 + max{n, m}.
(f): For the complete bipartite graph Kn,m, n, m > 2,

HEI(Kn,m) =

{
3n− 1, if n = m ;
b3(n+m)

2 c − 1, if n 6= m.

(g): For the wheel graph W1,p−1, p ≥ 5,

HEI(W1,p−1) =

{
3p−3

2 + 1, if p− 1 is even ;
d3p−3

2 e+ 1, if p− 1 is odd.

Observation 2.1. If G is a nontrivial connected graph of order p, G 6= K2, then

2 ≤ HI(G) ≤ HEI(G) ≤ 2p− 3.

But if G is disconnected, this relation need not be true. For example, consider the
graph K2 ∪ K2 ∪ K2 ∪ K2 = 4K2, HI(4K2) = 8, HEI(4K2) = 5, so HEI(G) < HI(G)
in this case. The star graph K1,p−1 shows a beautiful contrast between the two pa-
rameters. Removing edges from K1,p−1 decreases the order of the largest compo-
nent by only one for each edge, thus HEI(K1,p−1) = p. In comparison, removing the
central vertex from the star K1,p−1 leaves only isolated vertices, from which we get
HI(K1,p−1) = 2. On the other hand, the two parameters are equal for paths: for the
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path Pp with p ≥ 4, HI(Pp) = HEI(Pp) = p− 1. We remove p− 3 edges from Pp, then
p− 2 components remain, with two components of order 2 and the other components
having only one vertex. Therefore, HEI(Pp) = p− 1.

Let G1 and G2 be graphs. Then the question arises: is the hub edge-integrity a
suitable measure of stability? In other words, does the hub edge-integrity discriminate
between G1 and G2? There are many examples of graphs which suggest that HEI(G)
is a suitable measure of stability which is able to discriminate between graphs. For
example, consider the graphs G1, G2 and G3 in Figure 1.

u
uu

u
�
�uu

G1

uuu
uuu

u uu u
uu

G2 G3

Figure 1: G1, G2, and G3.

We have HI(G1) = HI(G2) = HI(G3) = 4, the hub-integrity does not discriminate
between graphs G1, G2 and G3. But HEI(G1) = 5, HEI(G2) = 4 and HEI(G3) = 6,
so that HEI(G1) 6= HEI(G2) 6= HEI(G3), and the hub edge-integrity discriminates
between graphs G1, G2 and G3.

Remark 2.1. We have

• HEI(G) 6= 0, by the definition of hub edge-integrity, m(G − S) ≥ 1 for any S ⊆
E(G).
• HEI(G) = 2 if and only if G ∼= K2.
• HEI(G) = 3 if and only if G ∼= 2K2, or G ∼= P3, G ∼= P4 or G ∼= K3.

Proposition 2.2. Let G be a graph with p vertices. Then 1 ≤ HEI(G) ≤ p+ 2, if 4 ≤ p ≤ 7

and HEI(G) ≤ p2

8 + 3
4 p− 3, if p ≥ 8, and the upper bound is sharp for G ∼= K p

2 , p
2
, and p is

even.

Proof. By Observation 2.1, HEI(G) ≤ 2p− 3, if G = Kp, p 6= 2. So to find the upper
bound of HEI(G), we should choose any graph G such that G is union of complete
graphs. Hence we discuss the following cases:
Case 1: 4 ≤ p ≤ 7. If p = 4, then we have only one graph G = 4K1 such that
G = K4, and HEI(K4) = 5. Now, if p = 5, 6 or 7, we have G = 5K1, K1,4, 6K1, K1,5, K3,4
or K1,6 such that G = K5, K1 ∪ K4, K6, K1 ∪ K5, K3 ∪ K4 or K1 ∪ K6, respectively. Then
HEI(K5) = HEI(K1 ∪ K4) = 5, HEI(K6) = 6, HEI(K1 ∪ K5) = 7 and HEI(K3 ∪ K4) =
8, HEI(K1 ∪ K6) = 9. Hence, HEI(G) ≤ p + 2.
Case 2: p ≥ 8, Since the greatest value of HEI is achieved for any graph G if G = Kp,
and to get the most value of the complement graph G of G, we should select the graph
G such that G = Kp. Since Kn,m = Kn ∪ Km, the greatest value of HEI(G) is achieved
if G = Kn,m, n + m = p and p is even. Then, G = K p

2 , p
2

and G = K p
2
∪K p

2
. By definition
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of edge hub-integrity of disconnected graph, we have

(1)

HEI(G) = |E(K p
2
)|+ HEI(K p

2
)

=
p
2 (

p
2 − 1)
2

+ 2
p
2
− 3

=
p
4
(

p
2
− 1) + p− 3

=
p2

8
+

3p
4
− 3.

�

Remark 2.2. In general, the inequality HEI(G′) ≤ HEI(G) is not true for a subgraph G′ of
G. For example, for the graph G and a subgraph G′ of G shown in Figure 2, HEI(G) = 7,
while HEI(G′) = 8.

tt
t t

ttt
t

t
G

tt
t tttt

tt
G′

Figure 2: G and G′

So, it follows that the number of edges need not necessarily grow with the stability of
a graph.

Theorem 2.1. Let G be a graph, and D ⊆ E. Then HEI(G− D) ≥ HEI(G)− |D|.
Proof. Let S be an HEI-set of G−D, then S is an edge hub set of G−D and HEI(G−
D) = |S| + m((G − D) − S). Let S′ = S ∪ D, then S′ is an edge hub set of G and
m(G− S′) = m((G− D)− S). Therefore,

HEI(G) ≤ |S′|+ m(G− S′)
= |S|+ |D|+ m[(G− D)− S]
= HEI(G− D) + |D|.

Then HEI(G− D) ≥ HEI(G)− |D|. �

Corollary 2.1. For any graph G, e ∈ E(G), HEI(G− e) ≥ HEI(G)− 1, the bound is sharp
for G = K1,p−1.

Theorem 2.2. Let S be an HEI-set of G. Then m(G− S) ≤ HEI(G− S).

Proof. Let S′ be an HEI-set of G− S,

|S|+ m(G− S) = HEI(G)

≤ m(G− (S ∪ S′)) + |S ∪ S′|
= |S|+ m((G− S)− S′) + |S′|
= |S|+ HEI(G− S).
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Then m(G− S) ≤ HEI(G− S). �

Observation 2.2. (i) HEI(G) = HI(G) = |E(G)| if G ∼= Pp, p ≥ 4.
(ii) HEI(G) = HI(G) = |E(G)| = |V(G)| if and only if G ∼= rC3, r ≥ 1.

Lemma 2.1. For any connected graph G of order p and size q, G 6= K2,

HEI(G) ≤ 2q− 1.

This bound is sharp for G = P3.

Proof. By Observation 2.1, and since p − 1 ≤ q for any connected graph, we have,
HEI(G) ≤ 2p− 3 = 2(p− 1)− 1 ≤ 2q− 1. �

Theorem 2.3. Let G be a connected graph. Then every edge of G is an HEI-set of G if and
only if G ∼= K1,p−1.

Proof. Let every edge of G constitute an HEI-set of G. Let e ∈ E(G), then {e} is an
HEI-set of G. Therefore,

(2) 1 + m(G− e) = HEI(G).

Hence, m(G− e) = HEI(G)− 1, for every e ∈ E(G). Since G is connected, every edge
of G must be incident to a pendant vertex. Then

(3) m(G− e) = m(G)− 1.

From (2) and (3), HEI(G) = m(G) = p. So HEI(G) = p, which implies that G is a
star.
Conversely, if G is a star K1,p−1, then consider S = {e} for any e ∈ E(G). We have
m(G− S) = p− 1 so that HEI(G) = p, hence every edge is an HEI−set of G. �

Proposition 2.3. If a connected graph G is isomorphic to its line graph, then HEI(G) =
HEI(L(G)). The converse is not true, for example, see the graph G in Figure 3.

u uu u
u

uG

u uu �
��

@
@@

u
uL(G)

Figure 3: G, L(G)

HEI(G) = 5 = HEI(L(G)), but G and L(G) are not isomorphic.

Proposition 2.4. Let G be a connected graph with ∆(G) ≤ 2. Then HEI(G) = |E(G)| if
and only if G = Pp, p ≥ 4 or G = Cp, 3 ≤ p ≤ 5.

Proof. G is a path or cycle, since G is a connected graph with ∆(G) ≤ 2, and from
Proposition 2.1, HEI(G) = |E(G)|. Conversely, suppose that HEI(G) = |E(G)|. Since
∆ ≤ 2, G = Pp, p ≥ 2 or Cp, p ≥ 3.
Case 1: G = Pp, p ≥ 2. If G = P2, then HEI(G) = 2 6= |E(G)| = 1 and if G = P3, then
HEI(G) = 3 6= |E(G)| = 2.
Case 2: G = Cp, p ≥ 3. If p ≥ 6, then HEI(G) = p − 1 whereas |E(G)| = p, then
3 ≤ p ≤ 5. �
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Lemma 2.2. For any graph G, HEI(G) ≥ δ(G) + 1.

Proof. Consider S an HEI− set of G, i.e. HEI(G) = |S|+ m(G− S). Since m(G− S) ≥
δ(G − S) + 1 ≥ δ(G)− |S| + 1, we have, HEI(G) = |S| + m(G − S) ≥ |S| + δ(G)−
|S|+ 1. �

Lemma 2.3. For any graph G, HEI(G) ≥ ∆(G) + 1.

Proof. The proof is similar to the proof of Lemma 2.2. �

Proposition 2.5. For any graph G,
(1) HEI(G) ≥ λ(G) + 1.
(2) HEI(G) ≥ κ(G) + 1.

Proof. The proofs follow from Theorem 1.1 and Lemma 2.2. �

Lemma 2.4. For any graph G, HEI(G) ≥ α1(G).

Proof. Since an edge hub set is an edge covering set, this completes the proof and the
bound is sharp for G = S2,2. �

Lemma 2.5. For any graph G, HEI(G) ≥ β(G). The bound is sharp for G = S2,3.

Observation 2.3. We have
(1) I(G) = I′(G) = HI(G) = HEI(G) if and only if G ∼= P4, G ∼= K2 or G ∼= K3.
(2) I(G) = I′(G) = HI(G) = HEI(G) = |V(G)| if and only if G ∼= K2, G ∼= K3.
(3) I(G) = I′(G) = HI(G) = HEI(G) = |E(G)| if and only if G ∼= P4, or G ∼= K3.
(4) I(G) = I′(G) = HI(G) = HEI(G) = |V(G)| = |E(G)| if and only if G ∼= K3.

Lemma 2.6. For any connected graph G, HEI(G) ≥ χ(G).

Proof. Since HEI(G) ≥ HI(G) for any connected graph G, and by Theorem 1.2, we
get the result. �

Proposition 2.6. For every integer r ≥ 2, there exists graph G such that HEI(G) = r.

Proof. Suppose r = 2, let G = K1,1. Then HEI(K1,1) = 2.
For r = 3, let G = K1,2. Then HEI(K1,2) = 3.
For r = 4, let G = K1,3. Then HEI(K1,1) = 4.
And so on, for r = n− 1, let G = K1,n−1. Then HEI(K1,n−1) = n− 1. �

Since 1 ≤ HI(G) ≤ p and 1 ≤ HEI(G) ≤ 2p− 3, G 6= K2, the proof of the following
result is straight forward.

Lemma 2.7. For any graph G 6= K2,
(1) p + 1 ≤ HI(G) + HEI(G) ≤ 3p− 3.
(2) p ≤ HI(G)HEI(G) ≤ 2p2 − 3p.

The upper bound is sharp for G = Kp, and the lower bound is sharp for G = K1.

Proposition 2.7. For any connected graph G, HEI(G) = HI(G) if G is one of the following
graphs: G ∼= Pp, p ≥ 4, G ∼= K2, G ∼= K3, G1, G2 or G3 shown in Figure 4.
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Interestingly, for a given positive integer n, we can get a graph G whose order, maximum
degree and HEI are related to n. So, we have the following theorem.

Theorem 2.4. For any positive integer n, there exists a graph G such that HEI(G) −
d p

∆+1e = n.

Proof. For n = 1, let G = K2. Then, HEI(G)− d p
∆+1e = 2− 1 = 1.

For n = 2, let G = P3. Then, HEI(G)− d p
∆+1e = 3− 1 = 2.

For n ≥ 3, let G = K1,n such that p = n + 1, then HEI(G) = n + 1 and d p
∆+1e =

dn+1
n+1e = 1. Thus, HEI(G)− d p

∆+1e = 1 + n− 1 = n. �

Remark 2.3. If G is disconnected and G ∼= mPp, p ≥ 4, m ≥ 2, and G ∼= mCp, m ≥ 2, 3 ≤
p ≤ 5. Then HEI(G) = |E(G)|.

Remark 2.4. If G is star graph or L(Bp,d) with p− d = 2 or G ∼= Cp, 3 ≤ p ≤ 5, or G is
one of the following graphs in Figure 5, then HEI(G) = p.
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Figure 5: Graphs for Remark 2.4
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3. Hub edge-integrity of a tree

Firstly, the behaviour of parameters hub-integrity and hub edge-integrity for star
and path graphs are compared. A path has the greatest hub-integrity among trees of
a given order and a star the least, while a star has the greatest hub edge-integrity, but
a path does not have the least. The hub edge-integrity of path is p− 1, p ≥ 4. There
are other graphs having this value, for example, a broom graph Bp,d with p− d = 2
and d ≥ 4 and S2,m, m ≥ 3, HEI(S2,m) = HEI(Bp,d) = p− 1.

Theorem 3.1. For any tree T, with p vertices, he(T) = q− q1, where q1 is the number of
pendant edges.

Proof. Suppose that set S consists of all internal edges in T. Clearly, S is an edge hub
set, since for any x, y ∈ E− S, there is an S-path in T between x and y. Every edge
belonging to S is a bridge, hence any proper subset of S cannot be an edge hub set. S is
a minimum edge hub set considered. In case any edge e from S is removed, then there
does not exist path between any two pendant edges x, y ∈ E− S, so S− {e} is not an
edge hub set for any e ∈ S, therefore S must be a minimum, and he(T) = q− q1. �

Theorem 3.2. HEI(T) = q− q1 + l + 1, for any tree T of order p, where l is the number of
trivial components and q1 is the number of pendant edges.

Proof. Let S ⊆ E(T) such that HEI(T) = |S|+ m(T − S). Theorem 3.1 demonstrates
that |S| = q− q1. Consider X = {x1, x2, ..., xt} be the strong steam of T. Suppose that
u is a vertex with a maximum degree of X and T − u consists of l trivial components
and z nontrivial components. Since every internal edge is a bridge, if all q− q1 edges
are deleted, we get m(T − S) ≥ 2, so the largest component of T − S has order l + 1.
Then HEI(T) = |S|+ m(T − S) = q− q1 + l + 1. �

Definition 3.1. [18] The binomial tree Bp is an ordered tree defined recursively. The binomial
tree B0 consists of a single vertex. The binomial tree Bp consists of two binomial trees Bp−1
that are linked together: the root of one is the leftmost child of the root of the other.

Theorem 3.3. Let n ≥ 2, be a positive integer. Then HEI(Bn) = |E(Bn−1)|+ 2.

Proof. The number vertices of Bn is 2n and the number of edges is 2n − 1. Let S
be an HEI-set of Bn. The internal edges in Bn form a minimum edge hub set of
Bn, so it leads to |S| = |E(Bn−1)|, since for any binomial tree Bn, the number of
internal edges is equal to the number of edges in Bn−1, and removing it from Bn,
results in 2n−1 components of order 2, thus m(Bn − E(Bn−1)) = 2. Then, HEI(Bn) =
|E(Bn−1)|+ 2. �

Definition 3.2. [19] A galaxy graph G is a forest in which each component is a star.

Theorem 3.4. For a (p, q) galaxy graph, G = ∪k
i=1K1,qi ,

HEI(G) =

{
q + 1, if q1 = q2 = · · · = qk ;
∑k

i=1 qk + 1, otherwise.

Proof. Suppose that G consists of k components G1, G2, G3, · · · , Gk of sizes q1, q2, q3, · · · , qk,
respectively. We consider the following two cases:

Online Journal of Analytic Combinatorics, Issue 15 (2020), #13



10 SULTAN SENAN MAHDE AND VEENA MATHAD

Case 1: q1 = q2 = q3 = · · · = qk = q
k , then HEI(G) = ∑k−1

i=1 (qi) + HEI(Gk) =

(k− 1) q
k +

q
k + 1 = q + 1.

Case 2: q1 ≤ q2 ≤ q3 ≤ · · · ≤ qk, then HEI(G) = q1 + q2 + q3 + · · · + qk−1 +

HEI(Gk) = q1 + q2 + q3 + · · ·+ qk−1 + qk + 1 = ∑k
i=1 qi + 1. �

Definition 3.3. [11] A tree is called a binary tree if it has one vertex of degree 2 and each of
the remaining vertices of degree 1 or 3. Clearly, P3 is the smallest binary tree.

Theorem 3.5. If a tree T is a binary tree of order p, then HEI(T) = d p
2 e+ 1.

Proof. Let S ⊆ E(T) such that HEI(T) = |S|+ m(T − S). Since the edge hub set of
any binary tree consists of all internal edges, |S| = q1 − 2, where q1 is the number
of pendant edges of T. Removing q1 − 2 internals edges from binary tree T, results
in components of order 2 or 3. Therefore, HEI(T) = q1 − 2 + 3 = q1 + 1. Since the
number of pendant edges in any binary tree equal d p

2 e, we have q1 = d p
2 e. Therefore

HEI(T) = d p
2 e+ 1. �

Theorem 3.6. Let Gs be a spider graph with 2p− 1 vertices. Then

HEI(Gs) = HI(Gs) = p + 1.

v
"

"
"
"

"
"" vvvv v

vvv vv

u

u1 u2 u3 u4

v1 v2 v3 v4 vp−1

r r r
r r r up−1

Figure 6: Gs

Proof. Let Gs be a spider graph shown in Figure 6, with |V(Gs)| = 2p − 1 and
|E(Gs)| = 2p− 2. Consider S = {u, u1, u2, · · · , up−1}, a hub set of Gs. Then m(Gs −
S) = 1, therefore,

(4) HI(Gs) ≤ |S|+ m((Gs)− S) = p + 1.

Consider S1 any hub set other than S such that m(Gs − S1) = 0, then |S1| ≥ 2p− 1.
This implies that

(5) |S1|+ m(Gs − S1) > |S|+ m(Gs − S).

Assume that S2 is any hub set other than S such that m(Gs − S2) ≥ 1, then

(6) |S2|+ m(Gs − S2) ≥ p + 1.

Therefore, 4, 5 and 6, lead to HI(Gs) = p + 1.
Now consider S′ = {(u, u1), (u, u2), · · · , (u, up−1)}, an edge hub set of Gs. Then
m(Gs − S′) = 2. Thus,

(7) HEI(Gs) ≤ |S′|+ m(Gs − S′) = p + 1.
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If S′1 is any edge hub set other than S′ such that m(Gs − S′1) = 1, then |S′1| ≥ 2p− 2.
This implies that

(8) |S′1|+ m(Gs − S′1) > 2p− 2.

Suppose that S′2 is any edge hub set other than S′ and m(Gs − S′2) ≥ 2 , then

(9) |S′2|+ m(Gs − S′2) ≥ p + 1.

Therefore, 7, 8 and 9, lead to HEI(Gs) = p + 1. �

Corollary 3.1. For every integer n ≥ 2, there exists a graph G of order p ≥ n with
HEI(G) = HI(G) = n.

Proof. For n = 2, 3, the graphs K2, C3 have the required property. For n ≥ 4, the spider
graph in Theorem 3.6 has the same property. This completes the proof. �

4. Conclusion

In this paper, we introduced the concept of the hub edge-integrity of graphs. We
obtained the bounds and some properties for hub edge-integrity of graphs. Relation-
ships between hub edge-integrity and some other parameters were established.
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