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Abstract. We discuss a framework for constructing large subsets of Rn and Kn for
non-archimedean local fields K. This framework is applied to obtain new estimates for
the Hausdorff dimension of angle-avoiding sets and to provide a counterexample to a
limiting version of the Capset problem.

1. Introduction and Background

Many questions in additive combinatorics and geometric measure theory are of the
following form: If a set S in some space X is large in an appropriate sense, then
must it contain a certain configuration of points? The techniques involved in studying
the problem depend upon the space X and the configuration of points being studied.
Problems in additive combinatorics are often concerned with the case in which X is a
finite abelian group, S is assumed to contain a certain number of elements depending
on the order of X, and the configurations being studied are solutions to linear equations
in X. For example, Roth’s theorem on 3-term arithmetic progressions [7] and the recent
capset result of Ellenberg and Gijswijt [2] are of this type. In geometric measure theory,
the space X is often taken to be Rn and the configurations under study tend to be
geometric in nature, and the results concern the Hausdorff dimension of the set S.
Examples include the recent result of Harangi et al [4] on angle-avoiding sets and the
general work of András Máthé on polynomial configurations [5].

Given a commutative ring R and a function f : Rnv → R, we are interested in subsets
of Rn with large Hausdorff dimension not containing any v distinct points x1, . . . , xv
such that f (x1, x2, . . . , xv) = 0. Máthé [5] considers the case in which R = R and f is
a polynomial of degree d with rational coefficients, obtaining a Hausdorff dimension
bound of n/d. In particular, this bound does not depend on the number of points v in
the configuration. Máthé applies the n/d bound to obtain a result on angle-avoiding
sets. The author and Pramanik [3] obtain a bound of 1

v−1 for non-polynomial functions
f satisfying some mild conditions on the derivatives.

We will obtain bounds for functions f admitting a special set of points called a land-
mark pair. A landmark pair is a ubiquitous set of points that avoid a neighbourhood
of 0 and satisfy certain mapping properties under f . The main result of this paper is
Theorem 2.1, which allows for the construction of sets E of large Hausdorff dimension
avoiding such functions f . This theorem implies a slight generalization of Máthé’s
result:

1



2 ROBERT FRASER

Corollary 1.1. Let pj(x1, . . . , xvj) : Rnvj → R be a countable collection of polynomials of
degree at most d whose coefficients are algebraic over the rational numbers. Then there exists
a subset E ⊂ Rn with Hausdorff dimension n

d that does not contain, for any j, any vj-tuple of
distinct points x1, . . . , xvj such that pj(x1, . . . , xvj) = 0.

Theorem 2.1 can be applied to a diverse set of avoidance problems on a variety of
spaces. For example, we are also able to obtain a p-adic version of Máthé’s result
(Corollary 8.1) using the main theorem in this paper.

2. Landmark Systems

The main result is the following:

Theorem 2.1. Let K be either a non-archimedean local field or R, and let { fq}∞
q=1 : Knvq → K

be a sequence of |αq|-times strictly differentiable functions. Suppose that there exists a ball
B ⊂ Kn on which each function fq has some partial derivative ∂αq of order |αq| that does not
vanish on Bv for any q. Suppose there exists a sequence εm of positive real numbers with limit 0,
and a sequence of weak approximate landmark pairs {(`(q,m,j)

1 , `(q,m,j)
2 )}q∈Z,m∈Z,j∈{0,1,...,|αq|−1}

with parameters r, γ, σ and of degree d + εm, and adapted to Dj,q fq, where {Dj,q}
|αq|
j=0 is a

sequence of differential operators such that D0,q is the identity operator, Dj,q = Dj−1,q∂
x(k0(j,q))

i0(j,q)

and such that D|αq|,q = ∂αq . Then there exists a set E ⊂ B of Hausdorff dimension nσ
dγ that such

that E does not contain any vq distinct points (x(1), . . . , x(vq)) such that fq(x(1), . . . , x(vq)) = 0
for any q.

In order to make sense of this result, we need to define the notion of a weak approx-
imate landmark pair.

Let R be a commutative ring equipped with a metric ρ(x, y) : R× R → R satisfying
the following properties for all x, y, and z

ρ(x + z, y + z) = ρ(x, y) (1)
ρ(0, xn) = ρ(0, x)n (2)

Suppose that, with respect to this metric, R is locally compact and does not have any
isolated points.

Definition 2.2 (Landmark System). We will call {`w : R → Z+ ∪ ∞}∞
w=1 a landmark

system for addition and multiplication on Ω; Ω ⊂ R compact, if it satisfies the following
properties for some positive real numbers r, γ, and σ such that γ ≥ σ, and some appropriate φ1
and φ2:

• Monotonicity property: `w(x) ≤ `v(x) whenever w > v and x ∈ Ω
• Additive property:

`φ1(w1,w2)(x + y) ≤ max(`w1(x), `w2(y)) + o(`w1(x) + `w2(y))
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for any x, y ∈ Ω.
• Multiplicative property:

`φ2(w1,w2)(xy) ≤ `w1(x) + `w2(y) + o(`w1(x) + `w2(y))

for any x, y ∈ Ω.
• Separation property: The ball B(0; C1(ε, w)−1rγj(1+ε)) does not contain any nonzero

points y such that `w(y) ≤ j. In particular, this will hold if the points satisfying
`w(y) ≤ j are C1(ε, w)−1rγj(1+ε)-separated.
• Ubiquity property: For any x ∈ Ω and any integer k > 0, and any ε > 0 there is at

least one point y in the ball B(x; C2(ε, w)r(σ−ε)k) such that `w(y) ≤ k.

If there exists a function `(x) such that `w(x) = `(x) for all w and all x, we call ` a
landmark function for R. In practice, the error terms in the additive and multiplicative
property will be very small; in every example we present, they can in fact be taken to
be constant or zero.

We will not be particularly concerned with landmark systems per se, but will instead
concern ourselves with the related notion of a landmark pair.

Definition 2.3 (Landmark Pair). Let X be a locally compact metric space, let Y be a pointed
metric space with distinguished point 0 and let f : Xv → Y be a function. For positive real
numbers r, γ, σ with γ ≥ σ, we will call (`1, `2), where `1 : X → Z+ ∪ {∞}, `2 : Y →
Z+ ∪ {∞} an (r, γ, σ)-landmark pair adapted to f of degree d on a compact set Ω ⊂ X if
(`1, `2) satisfies the following properties for all ε > 0:

• Function property:

`2( f (x1, . . . , xv)) ≤ d max
1≤i≤v

`1(xi) + o(max
1≤i≤v

`1(xi))

for all x1, . . . , xv ∈ Ω.
• Separation property: There are no nonzero points y in B(0; C1(ε)

−1rγj(1+ε)) such
that `2(y) ≤ j. In particular, this will hold if the points satisfying `2(y) ≤ j are
C1(ε)

−1rγj(1+ε)-separated.
• Ubiquity property: For any x ∈ Ω, any integer k > 0, and any ε > 0 there is at least

one y in the ball B(x; C2(ε)r(σ−ε)k) such that `1(y) ≤ k.

In the context of a landmark pair (`1, `2), points for which `1 or `2 is finite will be
called landmarks. For us, the primary interest in landmark systems is that they give
rise to landmark pairs for polynomials with coefficients in the landmark system.

Lemma 2.4. If {`w}∞
w=1 is an (r, γ, σ)-landmark system on Ω ⊂ R, and if p is a polynomial

of degree d whose coefficients are finite with respect to some `w1 , then there exists a w(p) such
that (`1, `w(p)) is an (r, γ, σ)-landmark pair on Ω of degree d for p.

Proof. The separation and ubiquity conditions immediately follow for any w > 1 from
the assumption. We verify the function condition by induction on the degree of the
polynomial. We begin with polynomials of degree 1.
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In order to show the statement for polynomials of degree 1, we will first suppose
p is of the form p(x1, . . . , xv) = a1x1 + a for some a, a1 such that `w1(a) and `w1(a1)
are finite. Then `φ1(φ2(w1,1),w1)

(a1x + a) can be estimated by successively applying the
additive and multiplicative conditions:

`φ1(φ2(w1,1),w1)
(a1x + a)

≤ (1 + o(1))max(`φ2(w1,1)(a1x), `w1(a))
≤ (1 + o(1))max((1 + o(1))(`w1(a1) + `1(x)), `w1(a))
≤ (1 + o(1))`1(x) + `w1(a1) + `w1(a)
≤ (1 + o(1))`1(x)

Thus the function condition holds for p.
Next, we will show the statement for arbitrary linear polynomials by performing an

induction on the number of linear terms. Suppose that we know the condition holds
for polynomials of the form a1x1 + · · ·+ av−1xv−1 + a. We will show that the condition
holds for polynomials of the form a1x1 + · · · + avxv + a. Let p(x1, . . . , xv) = a1x1 +
a2x2 + · · ·+ avxv + a, and let r(x2, . . . , xv) = a2x2 + · · ·+ avxv + a, so that p(x1, . . . , xv) =
a1x1 + r(x2, . . . , xv). Then

`φ1(φ2(w1,1),w(r))(a1x1 + r(x2, . . . , xv))

≤ (1 + o(1))max(`φ2(w1,1)(a1x1), `w(r)r(x1, . . . , xv))

≤ (1 + o(1))max(`w1(a1) + `1(x1) + o(`1(x1)), max
j≥2

(`1(xj)) + o(∑
j≥2

l1(xj)))

≤ (1 + o(1))max(`1(x1), . . . , `1(xv)).

This proves the statement for polynomials of degree 1.
Now, suppose we know the statement is true for polynomials of degree d− 1. We

will show it is true for polynomials of degree d.
To show this, we will induct on the number of terms t of degree d. If t = 1, then

p(x) = aαxα + q(x), where α is some multi-index of degree d and q(x) has degree at
most d− 1. Let w∗∗∗ be the value of w(r) corresponding to the polynomial r(x) = xβ,
where β is a multi-index of degree d− 1 that is obtained from α by decrementing the
first nonzero entry of α; say the xi entry. Let w∗∗ be φ2(1, w∗∗∗), let w∗ = φ2(w∗∗, w1),
and let w = φ1(w∗, w(q)). We claim that w(p) can be chosen to be w. To see this, let
`1(x) = maxj `1(xj) and observe

`φ1(w∗,w(q))(aαxα + q(x))
≤ (1 + o(1))max(`w∗(aαxα), `w(q)(q(x)))
≤ (1 + o(1))max((1 + o(1))(`w1(aα) + `w∗∗(xα)), (1 + o(1))(n− 1)`1(x))
≤ (1 + o(1))max((1 + o(1))(`w1(an) + `1(xi) + `w∗∗∗(xβ)), (n− 1)`1(x))
≤ (1 + o(1))max(`w1(an) + `1(x) + (n− 1)`1(x)), (n− 1)`1(x)))

and this maximum is no more than n`1(x) + o(`1(x)), as desired.
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Finally, if t > 1, then we can write p(x) = aαxα + q(x), where q(x) is a polynomial of
degree d with t− 1 terms of degree d. A similar argument to the inductive step in the
linear case above gives the desired result. �

In fact, for our purposes, we do not need landmarks to map exactly to other land-
marks, but only to map to points that are close to landmarks. We codify this notion in
the following definition.

Definition 2.5 (Approximate Landmark Pair). Let X be a locally compact metric space,
Ω ⊂ X compact, and Y a pointed metric space with distinguished point 0. Let r, γ, and σ
be positive real numbers such that γ ≥ σ. A weak approximate landmark pair of degree
d adapted to f on Ω is a pair of functions (`1, `2) satisfying the separation and ubiquity
conditions for γ and σ such that there exists an infinite subset J ⊂N and a number ε > 0 such
that, for any j ∈ J and any x1, . . . , xv satisfying max(`1(x1), . . . , `1(xv)) = j, we have that

`2(y) ≤ dj + o(j)

for some y satisfying the condition that ρ(y, f (x)) ≤ r(γd+ε)j. If J = N, we call (`1, `2) an
approximate landmark pair of degree d adapted to f .

We provide some examples of landmark systems, landmark pairs, and weak approx-
imate landmark pairs in the following sections.

3. Examples of Real Landmarks

We begin with a motivating example. This example comes from [5] and serves as the
motivation for landmark systems.

Example 3.1. Let R = R. Let N be a fixed integer. Define `(x) to be the minimal nonnegative
integer n (if such an n exists) such that

x =
a

Nn

where a is an integer. Take `(x) = `w(x) for all w. Then {`w}∞
w=1 is a landmark system for R

with r = N−1, γ = 1, and σ = 1.

Proof. The monotonicity property is trivially satisfied because `w does not depend on
w.

Consider the sum a
Nn1 + b

Nn2 . Without loss of generality, suppose n2 ≥ n1. Then we
can rewrite the sum as aNn2−n1+b

Nn2 , and therefore `w satisfies the additive property (the
function φ1 is not important because `w does not depend on w).

The product a
Nn1 · b

Nn2 is equal to ab
Nn1+n2

, so the multiplicative property is satisfied.
Clearly, the multiples of 1

Nn are 1
Nn -separated, so the separation condition is satisfied

for γ = 1.
Finally, each half-open ball of radius 1

Nn contains a number of the form a
Nn for some

integer a, so the ubiquity condition is satisfied for σ = 1. �
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The above example is somewhat trivial in that the ε and w from the definition were
not necessary. We present a more nontrivial example to illustrate the purpose of the w
and ε in the definition.

Example 3.2. Let R = R. Let Q(θ) be a finite real extension of Q of degree k and let `w(x) be
the minimal n (if it exists) such that

x =
1
2n (a0 + · · ·+ ak−1θk−1),

where a0, . . . , ak−1 are integers between −w2n and w2n. The value of `w(x) is taken to be ∞ if
x cannot be expressed in this form for any n.

Then {`w} is a landmark system on [0, 1] with r = 2−1; γ = σ = k.

Proof. The monotonicity property follows because the minimum is taken over a larger
set if w increases.

To prove the additive property, we want to consider the sum

2−n1(a0 + a1θ + · · ·+ ak−1θk−1) + 2−n2(b0 + b1θ + · · ·+ bk−1θk−1),

where |aj| ≤ w12n1 for all j and |bj| ≤ w22n2 for all j. Without loss of generality, we will
assume n2 ≥ n1. Then the sum can be rewritten as

2−n2((2n2−n1 a0 + b0) + (2n2−n1 a1 + b1)θ + · · ·+ (2n2−n1 ak + bk)θ
k).

Here, each 2n2−n1 aj ≤ w12n2 , so the additivity property holds. Here, φ1(w1, w2) =
w1 + w2 and there is no error term.

To prove the multiplicative property, we want to consider the product

2−n1(a0 + a1θ + · · ·+ ak−1θk−1) · 2−n2(b0 + b1θ + · · ·+ bkθk−1),

where each |aj| ≤ w12n1 and each |bj| ≤ w22n2 . The product is

2−n1−n2
k−1

∑
j1=0

k−1

∑
j2=0

aj1bj2θ j1+j2 .

For j1 + j2 ≤ k − 1, we do not need to re-write the term; for j1 + j2 ≥ k, we have
that θ j1+j2 can be expressed as a polynomial of degree at most k− 1 in θ with integer
coefficients. Therefore, the sum reduces to

2−n1−n2(c0 + c1θ + · · ·+ ckθk)

where each of c0, . . . ck is a sum of a bounded number of integers (say, at most T)
that are bounded above by w1w22n1+n2 . Thus the multiplicative property holds with
φ2(w1, w2) = Tw1w2 and no error term.

An elementary theorem (implicit in the proof of Theorem III of Chapter 5 of [1])
states that there are no k-tuples (a0, . . . , ak−1) such that |a0|, . . . , |ak−1| ≤ 2n+1w and

|a0 + a1θ + · · ·+ ak−1θk−1| ≤ C(w2n)−(k−1).

This implies the separation condition.
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It remains to verify the ubiquity condition. This will follow from the separation
condition given above together with a transference principle [1, Chapter 5, Theorem
VI, corollary]:

Theorem 3.3 (Transference Principle). If z is a k− 1-dimensional vector such that u · z− y >

C1X−(k−1) for all integer vectors u satisfying |u|∞ ≤ X and all integers y, then there exist
constants C2, C3 such that for any real number x such that 0 < x < 1, there exists a vector a
with |a|∞ < C2X and an integer a0 such that |a · z + a0 − x| ≤ C3X−(k−1).

This transference principle, applied with X = w2n and z = (θ, θ2, . . . , θk−1), im-
mediately implies that, for any real number x, there exist (a1, . . . , ak−1) such that
the point a1θ + · · · + ak−1θk−1 − 2nx is within Cw2−(k−1)n of an integer −a0, where
|a1|, . . . , |ak−1| < Cw2n for some appropriate constant C depending on θ. This, of
course, implies that |a0| is itself at most C′w2n, where C′ depends on θ but not on n or
on w. Thus, there exist a0, . . . , ak−1 with a0, . . . , ak−1 ≤ C′w2n such that a0 + a1θ + . . . +
ak−1θk−1 is within Cw2−n(k−1) of 2nx. Dividing by 2n gives the result. �

It is not clear if there is any way to find an appropriate landmark system for polyno-
mials with transcendental coefficients. Nonetheless, for polynomials with coefficients
well-approximated by rational numbers, we at least have access to a weak approximate
landmark pair.

Example 3.4. Let p(x1, . . . , xv) be a polynomial of degree d such that the coefficients of p are
simultaneously well-approximable to degree τ; that is, |ca − y| ≤ Cc−τ has infinitely many
solutions for positive integers c and integer vectors y where a is the vector of coefficients of p,
and where C is an appropriate constant. Let α > d/τ, and let J be the set of values j such that
there exists an integer cj such that 2α(j−1) ≤ cj < 2αj and such that |cja− y| ≤ C2τ(α+1)j.
Select such a cj for every j ∈ J and define `1(x) to be the minimal value of j ∈ J for which

x =
a
2j

for some integer a between −2j and 2j if such a j exists, and ∞ otherwise. Define `2(x) to be
the minimal value of d(d + α)je, where j ∈ J is such that

x =
a

cj2dj

for some integer a if such a j exists, and ∞ otherwise. Then (`1, `2) is a weak-approximate
landmark pair satisfying r = 1

2 , γ = 1, σ = 1 of degree d + α. We emphasize the loss in the
degree: although p is a polynomial of degree d, (`1, `2) is only a weak approximate landmark
pair of degree d + α.

Proof. Let j ∈ J and let cj be as described. Clearly multiples of 2−j are separated by
2−j, multiples of c−1

j 2−dj are separated by 2−(d+α)j, and therefore the separation and
ubiquity conditions are satisfied for γ = σ = 1, as described in Example 3.1. The factor
of d + α was introduced in order to allow us to choose σ = γ = 1 for this example.
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Then cj p is a polynomial whose coefficients lie within C2−αjτ of integers. Therefore,
if we plug in numbers of the form a

2j into p, where |a| ≤ 2j is an integer, we get
that cj p(x1, . . . , xv) is within C′2−αjτ of an integer multiple of 2−dj for an appropriate
constant C′. Dividing by cj, we get that p(x1, . . . , xv) is within a C′′2−αj(τ+1) of an
integer multiple of 2−djc−1

j . The condition α > d/τ implies that αj(τ + 1) = (ατ + α)j >
(d + α)j, completing the proof. �

For similar reasons, it is possible to construct weak approximate landmark pairs
for polynomials whose coefficients are simultaneously well-approximated by algebraic
numbers.

Example 3.5. Let p(x1, . . . , xv) be a polynomial of degree d such that there exists an algebraic
integer θ of degree k and a real number τ > k− 1 such that, for infinitely many (rational) integer
vectors (c0, . . . , ck−1), the polynomial (c0 + c1θ + ck−1θk−1)p(x1, . . . , xv) has coefficients of
the form b0 + b1θ + · · · + bk−1θk−1 + δ, where the coefficients b0, . . . , bk−1 are integers, and
|δ| ≤ max(|c0|, |c1| . . . , |ck−1|)−τ. Let α > dk

τ+1−k . Let J be the set of values j such that
there exist c0, . . . , ck−1 that satisfy 2α(j−1) ≤ maxi |ci| < 2αj, and such that each coefficient
of (c0 + · · ·+ ck−1θk−1)p(x1, . . . , xv) is of the form described in the previous sentence. Select
such a vector c(j) for every j ∈ J, and define `1(x) to be the minimal value of j ∈ J for which

x =
1
2j (a0 + a1θ + · · ·+ ak−1θk−1)

where each ai is an integer and maxi |ai| ≤ 2j if such a j exists, and ∞ otherwise. Define `2(x)
to be d(d + α)je, where j ∈ J is the minimal value such that

x =
1

(c(j)
0 + c(j)

1 θ + · · ·+ c(j)
k−1θk−1)2dj

(a0 + · · ·+ ak−1θk−1)

where each ai is an integer bounded above by W2(d+α)j in absolute value for some sufficiently
large W depending on p, θ, and k, and `2(x) = ∞ otherwise. Then (`1, `2) is a weak approxi-
mate landmark pair satisfying γ = k, σ = k, and r = 1

2 of degree d + α.

Proof. The separation and ubiquity conditions have already been verified for `1 and `2
with γ = σ = k in Example 3.2. We need only verify the function property.

Let p(x1, . . . , xv) be a polynomial. Suppose there exists c0 + · · ·+ ck−1θk−1 such that
2α(j−1) ≤ maxi(|ci|) < 2αj and (c0 + c1θ + · · ·+ ck−1θk−1)p(x1, . . . , xv) has coefficients of
the form a0 + a1θ + · · ·+ ak−1θk−1 + δ, where |δ| ≤ 2−τα(j−1); this is possible whenever
j ∈ J by assumption. For each variable x1, . . . , xv, we plug in a number of the form

2−j(b0 + b1θ + · · ·+ bk−1θk−1),

where maxi(|bi|) ≤ 2j, into (c0 + c1θ + · · ·+ ck−1θk−1)p(x1, . . . , xv). Each such number
satisfies `1(x) ≤ j, and each number x such that `1(x) = j is of this form. Then, the
output is within W2−ταj of a number of the form 2−dj(d0 + d1θ + · · · + dk−1θk−1) for
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some number W that depends only on θ, k and on the polynomial p. Here d0, . . . , dk−1
are integers that are bounded above in absolute value by W2(d+α)j where, again, W
is some constant depending only on θ, k, and p. We then divide by c0 + c1θ + · · · +
ck−1θk−1, and conclude that, for x1, x2, . . . , xv with max(`1(x1), . . . , `1(xv)) = j, we have
that p(x1, . . . , xv) is in a 2−(τ+1)αj-neighbourhood of a number of the form

2−dj

c0 + c1θ + · · ·+ ck−1θk−1 (d0 + d1θ + · · ·+ dk−1θk−1)

where the di are integers with absolute value bounded above by W2(d+α)j. This is to
say that p(x1, . . . , xv) is within a 2−(τ+1)αj neighbourhood of a point such that `2(j) ≤
d(d + α)je. The choice of α guarantees that (τ + 1)α > (d + α)k, and because γ = k it
follows that (`1, `2) is a weak approximate landmark pair. �

4. Examples of Non-Archimedean Landmarks

Landmark systems also arise in the setting of non-archimedean local fields, such as
the p-adic numbers and the field of formal Laurent series over a finite field. While
landmark systems for the p-adic numbers and for function fields are fairly simple to
construct, the construction of landmark systems on other non-archimedean local fields
(i.e., simple algebraic extensions of the p-adic numbers) is more involved. We begin by
providing a landmark system for function fields, which is the simplest case.

4.1. Introduction to Non-Archimedean Local Fields. Before describing landmark sys-
tems for non-archimedean local fields, we briefly discuss the theory of such fields.

A discrete valuation ring R is a principal ideal domain with a unique prime ideal
[8]. Because R is a principal ideal domain, the prime ideal of R is generated by a single
element of R; such elements are called uniformizers or uniformizing elements of R.
Let t be a uniformizing element of R. Because tR is the only prime ideal of R, it follows
that tR is not properly contained in any other prime ideals of R; therefore, tR is a
maximal ideal. It follows that the quotient R/tR is a field. This field R/tR is called the
residue class field of R. We will exclusively consider the situation in which R/tR is a
finite field Fq.

Suppose q = p f for some f . Then Fq has characteristic p, and p · 1 = 1 + 1 + · · ·+ 1︸ ︷︷ ︸
p times

belongs to the ideal tR. If p · 1 = 0, then the ring R has characteristic p; otherwise, R
has characteristic zero.

Let S be a family of representatives of the additive cosets of tR in R with the property
that 0 ∈ S. Every element x of R can be expressed uniquely in the form

(3) x =
∞

∑
j=0

xjtj

where xj runs over S. If each infinite sum of this form corresponds to an element x ∈ R,
then the discrete valuation ring R is called complete.
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For the rest of this section, we will assume R is a complete discrete valuation ring.
Let x ∈ R and write x as in (3). We define the absolute value |x| of x to be 0 if x = 0,
and q−j if xj 6= 0 and xk = 0 for all k < j. With respect to this absolute value, R forms
a complete metric space. This absolute value is discrete (this is the origin of the term
discrete valuation ring), taking only values {q−j : j ∈ Z} and zero. The closed balls
of radius q−j in the metric induced by this absolute value are disjoint. This absolute
value respects multiplication: |xy| = |x||y|. Furthermore, the absolute value satisfies
the ultrametric inequality

(4) |x + y| ≤ max(|x|, |y|).

We will take a few moments to consider the importance of inequality (4). Consider the
closed ball of radius r = q−j centered at x. Let y be any point in R such that |x− y| ≤ r,
and let z ∈ R be such that |y− z| ≤ r. Then we have

|x− z| = |(x− y) + (y− z)| ≤ max(|x− y|, |y− z|) ≤ r.

So the closed ball of radius r centered at x is precisely the same ball as the closed ball
of radius r centered at y. This implies that if two closed balls of radius r intersect, then
they must be equal.

The discrete nature of the absolute value also has some profound implications for the
topology on R. For example, consider the family of closed balls of radius q−j contained
in a closed ball of radius q−(j−1) centered at x. If |x− y| = q−(j−1) exactly, then x and y
lie in the same coset of tj−1R but not in the same coset of tjR. Since there are q cosets
of tjR contained in each coset of tj−1R, it follows that there are precisely q closed balls
of radius q−j contained in each closed ball of radius q−(j−1). We can also conclude that
if two open balls of radius q−j differ, then they are separated by a distance of at least
q−j.

In the same spirit as for R, we define on norm on Rn by∥∥∥(x(1), . . . , x(n))
∥∥∥ = max(|x(1)|, . . . , |x(n)|)

. This norm also satisfies the ultrametric property under addition, and therefore also
has the property that two distinct open balls of the same radius q−j are separated by at
least q−j, and has the further property that each ball of radius q−(j−1) contains exactly
qn balls of radius q−j.

We now describe the Haar probability measure dx on R: The closed ball B(0, 1) = R
is assigned a measure of 1, and any closed ball of radius q−j is assigned a measure of
q−j. With respect to this Haar measure, any coset of tjR has measure q−j. We will also
write dx for the Haar measure on Rn, which is the n-fold product of the Haar measure
on R.
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Given a complete discrete valuation ring R, we let K be the field of fractions over R.
Each nonzero element of K is of the form

(5) x =
∞

∑
j=M

xjtj

for some possibly negative integer M with xM 6= 0. The field K is called a non-
archimedean local field. We extend the absolute value on R to all of K by defining
|x| = q−M, where M is as in (5). We extend the Haar probability measure on R to a
σ-finite Haar measure on K by defining the measure of a closed ball of radius qj to be
qj, and extend the Haar measure on Rn to a σ-finite Haar measure on Kn that assigns a
measure of qjn to a closed ball of radius qj.

Note that R can be recovered from K algebraically as the ring of integers of K, and
topologically as the closed unit ball of K.

We will present two examples of non-archimedean local fields. The first such exam-
ple will be the field Qp, known as the p-adic numbers. Each x ∈N0 has a finite base-p
expansion

∞

∑
j=0

xj pj

where only finitely many xj are nonzero. We define |x|p to be p−j, where xj is the
lowest-degree nonzero term in the expansion. If we take the completion of N0 with
respect to this absolute value, we get the ring of elements of the form

∞

∑
j=0

xj pj.

This ring is called the ring of p-adic integers, denoted Zp. The p-adic integers are a
discrete valuation ring with prime ideal pZp. Any element of Zp with absolute value
equal to 1 has a multiplicative inverse in Zp. Therefore, Zp contains every rational
number r

q whose denominator q is relatively prime to p. This is a compact abelian
group under addition.

The field of fractions of Zp is denoted Qp and is known as the field of p-adic num-
bers. As an additive group, Qp is locally compact.

A second example of a non-archimedean local field is the field Fq((t)) of formal
Laurent series over the finite field Fq. Such fields are sometimes known as function
fields. The ring of integers Fq[[t]] consists of formal power series over Fq. Unlike the
case for Qp, the field Fq((t)) has finite characteristic p where q = p f .

These two examples are central to the theory of non-archimedean local fields. Ac-
cording to Theorem 5 of Section 1.3 and Theorem 8 of Section 1.8 of André Weil’s
book [9], every non-archimedean local field is either isomorphic to Fq((t)) or to a finite
extension of Qp. Finite extensions of Qp will be discussed in detail.

Let L/Qp be a finite extension. L must have residue field isomorphic to Fq for some
q = p f . The value f is known as the inertia degree of the extension L/Qp. Furthermore,
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the absolute value on Qp, which will be denoted | · |p, has an extension to L. Let t be any
uniformizing element of L. Then |t|p is equal to p1/e for some integer e. This integer
e is called the ramification index of the extension L/Qp. The degree of the extension
L/Qp is exactly e · f . An extension L/Qp is said to be unramified if e = 1, and is said to
be totally ramified if f = 1. An extension L/Qp always has a (not necessarily unique)
subfield K such that the field extension K/Qp is unramified; this is called a maximal
unramified subextension of the extension L/Qp.

4.2. Landmark Systems for Non-Archimedean Local Fields. Let K = Fq((t)) be a
function field; that is, a local field of finite characteristic, and let R be the ring of
integers of K. If x ∈ R, we can write x in the form

(6) x =
∞

∑
j=0

xjtj,

where xj ∈ Fq for all j, and t is a formal variable. Addition in R and multiplication in
R are defined in the usual way: The sum x + y is defined by

∞

∑
j=0

(xj + yj)tj

and the product of x and y is
∞

∑
j=0

(
∑

k1+k2=j
xk1yk2

)
tj.

Each of the sums ∑k1+k2=j xk1yk2 is finite and therefore is defined in Fq.
On Fq((t)), the absolute value of

x =
∞

∑
j=M

xjtj

is equal to q−M if xM is nonzero. The ring Fq[[t]] consists of points for which the
absolute value is bounded above by 1.

The dense subring Fq[t] of Fq[[t]] consists of values x with finite expansion; that is,
polynomials in t. This dense subring gives rise to a landmark system for the compact
set Fq[[t]].

Example 4.1 (Landmark system for Fq((t))). We define a landmark function that is finite
on Fq[t] and infinite on the rest of Fq((t)). For x ∈ Fq[t], define `(x) to be the minimal j such
that x can be written in the form

x0 + x1t + · · ·+ xjtj

and 0 if x = 0. That is, j is simply the degree of the polynomial x if x is a nonzero polynomial,
and ∞ if x is not a polynomial.

Then `w(x) = `(x) is a landmark system on the compact set Ω = Fq[[t]] with γ = σ = 1.
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Proof. There is nothing to check regarding the monotonicity property because `w is
independent of w.

The additive and multiplicative properties are clearly satisfied because of the usual
properties of the degree of a polynomial.

The separation condition is satisfied: the polynomial x0 + · · ·+ xjtj is the only poly-
nomial satisfying `(x) ≤ j in the open ball of radius q−j centered at x0 + · · ·+ xjtj.

The ubiquity condition is satisfied: the open ball of radius q−s centered at x0 + · · ·+
xsts will in fact contain exactly qj−s points such that `(x) ≤ j. �

The p-adic integers Zp consist of numbers of the form

x =
∞

∑
j=0

xj pj

where each xj ∈ {0, 1, . . . , p− 1}. The p-adic numbers Qp are defined similarly, but the
sum is allowed to contain a finite number of terms for which p has a negative power.

If x ∈ Zp has a finite expansion, we can view x ∈ Z as a nonnegative integer in base
p. We define a landmark function in analogy to the function field case.

Example 4.2. For x ∈ Z \ {0}, define

`(x0 + · · ·+ xj pj) = j

and
`(−(x0 + · · ·+ xj pj)) = j

if xj 6= 0, define `(0) = 0, and take `(x) = ∞ for x ∈ Zp \Z. Then `w = ` is a landmark
system for the compact set Zp with γ = σ = 1.

We point out that this is the first example in this paper for which there is a need for
the error terms in the additive and multiplicative properties for landmark systems. For
this example, the error terms can in fact taken to be bounded above by the constant
function equal to 1 everywhere.

Proof. The monotonicity property is trivial because `w does not depend on w.
The additive property follows for nonnegative integers x and y because

j

∑
i=0

xi pi +
j

∑
i=0

yi pi =
j

∑
i=0

(xi + yi)pi

and each xi + yi is bounded above by 2p− 2, so `(x+ y) ≤ max(`(x), `(y))+ 1. Another
way of saying this is that we need only carry one digit when adding elements of Z in
base p. Of course the same holds if one or both of x or y is negative.

The multiplicative property follows because of basic properties of arithmetic in Z:
if x and y are integers with absolute value strictly less than pj1+1 and pj2+1 (which is
equivalent to saying that `(x) ≤ j1 and `(y) ≤ j2), then xy is bounded above by pj1+j2+2

and therefore `(xy) ≤ `(x) + `(y) + 1.
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The separation property holds because the ball of radius p−j centered at zero does
not contain any other points x such that `(x) ≤ j: The condition that x is within p−j

of zero is equivalent to the statement that x is congruent to 0 modulo pj+1, and the
statement that `(x) ≤ j means that x is an integer between −(pj+1 − 1) and pj+1 − 1,
and the only integer satisfying all of these conditions is 0.

The ubiquity property holds because a p-adic open ball of radius p−s contains exactly
2pj−s elements y such that `(y) ≤ j (or 2pj−s − 1 if the p-adic open ball happens to
contain zero). �

Both of these examples (as well as Example 3.1) rely on fairly simple algebra. For
finite extensions of Qp, constructing a landmark system requires some nontrivial alge-
braic facts.

We will first consider the case of unramified extensions of Qp. Let K/Qp be an un-
ramified extension of Qp. K is formed by enlarging the residue field of Qp. Let Fp f

be the residue field of K and let R be the ring of integers of K. Then the field R/pR
is isomorphic to Fp f . We will normalize the absolute value on K so that |p|K = p− f ;
this is necessary in order to guarantee that the Hausdorff dimension of K is equal to 1.
Select α ∈ R such that α (mod pR) generates the multiplicative group F∗p f consisting of

the nonzero elements of Fp f . Then 1, α, α2, . . . , α f−1 are linearly independent over Qp.
Then α satisfies the relation b(α) ≡ 0 (mod pR) where b(α) is the p f th cyclotomic poly-
nomial. Furthermore, the derivative b′(α) is seen to have absolute value 1, because the
cyclotomic polynomial b on Fp f does not have multiple roots. Therefore, we can apply
Hensel’s lemma to conclude that there is an element t ∈ R satisfying t ≡ α(mod pR)
such that b(t) = 0. We know that {1, t, . . . , t f−1} must be a basis for the extension
K/Qp, since reducing modulo pR gives a basis for Fp f (this follows from the choice of
α). Each coefficient of b is an integer and can therefore be viewed as an element of Zp

such that `Zp is finite. Therefore, each power {tj : 0 ≤ j ≤ 2 f − 1} can be written as a
Zp-linear combination of 1, t, . . . , t f−1, where each coefficient maps to a finite number
under `Zp .

Because {1, t, t2, . . . , t f−1} forms a basis of the free module R/Zp, we can write each
element x ∈ R in the form

x(0) + tx(1) + · · · t f−1x( f−1)

where x(k) ∈ Zp for all k.

Example 4.3 (Landmark Systems for Unramified Extensions of Qp). Suppose x ∈ R can
be written in the form

x(0) + x(1) + · · ·+ t f−1x( f−1)

where t is as constructed above. Then we define the landmark function ` by

`(x) = max(`(x(0)), . . . , `(x( f−1))).
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Take `w(x) = `(x) for all w. Then `w is a landmark system with σ = γ = 1; r = q−1 = p− f .

Proof. The monotonicity property is trivial because `w does not depend on w.
The additive property holds because it holds in each component.
Let x and y satisfy `(x) ≤ j1 and `(y) ≤ j2. Then

xy =
f−1

∑
i=0

f−1

∑
k=0

xiykti+k

We observed above that ti+k can be can be written as a linear combination of 1, . . . , t f−1

where each coefficient has finite value under `Zp , so xy can be written as a sum of a
bounded number of terms that map to no more than j1 + j2 + C′ under ` for some
constant C′. Applying the additive property, we conclude that `(xy) ≤ j1 + j2 + C for
some constant C.

To see the separation property, notice that, for the ball of radius q−j containing 0, 0 is
the only element of this ball with `(x) ≤ j: writing x = x(0) + x(1)t + · · ·+ x( f−1)t f−1,
each component x(i) must necessarily be congruent to 0 modulo pj+1, and, when
viewed as an integer, must be between −(pj+1 − 1) and pj+1 − 1. Therefore each com-
ponent is zero.

The ubiquity property is a consequence of the p-adic version: consider a ball of
radius q−s centered at x0 + x1t + · · ·+ x f−1t f−1. This is an f -fold Cartesian product of
p-adic balls, and therefore contains at least (2pj−s − 1) f ≈ f p f (j−s) = qj−s points such
that `(x) is at most j. �

We will now extend this argument to arbitrary finite extensions K/Qp. Let RK be the
ring of integers of K, and let Ik be the unique prime ideal of RK. Then RK/IK is a field,
and is isomorphic to Fp f , where f is the inertia degree of the extension K/Qp. We will
normalize the absolute value on K so that |s|K = q−1 for any uniformizing element s of
K; that is, for any generator of the principal ideal Ik. This normalization is necessary in
order to guarantee that the Hausdorff dimension of K is equal to one. If K/Qp is a finite
extension of Qp, then there is an intermediate field extension L, a maximal unramified
subextension of K/Qp, such that L/Qp is an unramified extension and K/L is a totally
ramified extension. In particular, this means that the residue field of L is Fp f , where f
is, as before, the inertia degree of K/Qp.

We will need to use the following algebraic fact about totally ramified extensions
of L: every totally ramified extension K of L is generated by a root s of an Eisenstein
polynomial over RL, the ring of integers of L. A proof of this fact can be found in [6],
Chapter 2, Section 4.2 for the special case L = Qp, but the proof extends to arbitrary L.
This root s can be chosen to be a uniformizing element of K; that is, each element x in
the ring of integers of K can be written in the form

x =
∞

∑
j=0

xjsj
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where the xj lie in a complete residue system for L containing zero. Let a(x) = xe +

ae−1xe−1 + · · · + a0 be the Eisenstein polynomial with s as a root. Then each of the
ae−1, . . . , a0 ∈ RL is divisible by p, with |a0|L = q−1. Thus |a0|K = q−e, since we
normalized the absolute value so that |s|K = q−1.

Consider the equation a(s) = 0, which holds in K. Expanding the left side of the
equation, we get se + ae−1se−1 + · · · + a1s + a0 = 0. The derivative a′ is nonzero at
s; otherwise s would have degree less than e over L, which is impossible because a
irreducible by Eisenstein’s criterion. Suppose that the absolute value of a′(s) in K is
equal to q−α. Reduce the equation a(s) = 0 modulo s2α+2R. Performing the reduction,
we get se + ae−1se−1 + · · · + a1s + a0 ≡ 0 (mod s2α+2R). This equation continues to
hold if we replace a0, . . . , ae−1 by any other coefficients that are congruent to a0, . . . ae−1
modulo s2α+2R. In particular, we can replace them with elements b0, . . . , be−1 of L such
that `L(bi) is no more than

⌈2α+2
e
⌉
. Let b(x) be a polynomial with this replacement

made. Then b(s) ≡ 0 (mod s2α+2R) and |b′(s)| = qα, so by the version of Hensel’s
lemma appearing in Chapter 2, Section 1.5 of [6], it follows that b(x) has a root in an
open q−α−1-neighbourhood of s. In particular, this root must have absolute value q−1.
Let t be this root of b(x). Because t is a uniformizer of K, it follows that 1, t, . . . , te−1

form a vector space basis for the extension K/L, and we can write every element of the
ring of integers of K in the form

x = x(0) + x(1)t + · · ·+ x(e−1)te−1

where each of the x(0), . . . , x(e−1) are in the ring of integers of L. This number t allows
us to define a landmark system.

Example 4.4. For this choice of t, define `K(x) to be

max(`L(x(0)), . . . , `L(x(e−1))).

Then `w(x) = `K(x) is a landmark system for RK with γ = σ = 1 and r = q−1.

Proof. The monotonicity property is trivial because `K does not depend on w.
The additive property is shown as follows. Suppose `K(x) = j1 and `K(y) = j2. Then,

writing x = x(0) + x(1)t + · · ·+ x(e−1)te−1 and y = y(0) + y(1)t + · · ·+ y(e−1)te−1, we get

x + y = (x(0) + y(0)) + (x(1) + y(1))t + · · ·+ (x(e−1) + y(e−1))te−1

and therefore

`K(x + y) = max(`L(x(0) + y(0)), `L(x(1) + y(1)), . . . , `L(x(e−1) + y(e−1)))

≤ max
(
max(`L(x(0)), `L(y(0))) + 1, max(`L(x(1))`L(y(1))) + 1,

,. . . , max(`L(x(e−1)), `L(y(e−1))) + 1
)

≤ max(`K(x), `K(y)) + 1

which shows the additive property.
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Next, we show the multiplicative property. Suppose that `K(x) = j1 and `K(y) = j2.
Expanding the product, we get

xy =
e−1

∑
j=0

e−1

∑
k=0

x(j)y(k)tj+k

The number of summands depends only on the field K (and in particular on the
ramification index e of the extension K/L). Furthermore, each tj+k can be written
as an L-linear combination of {1, t, . . . , te−1} where each coefficient maps to a finite
number under `L. Since each `L(x(j)y(k)) is bounded above by `L(x(j)) + `L(y(k)) ≤
`K(x) + `K(y), it follows from the additive property for `K that the sum is bounded
above by `K(x) + `K(y) + CK for some appropriate constant K.

The separation property is shown in a similar way to the unramified case.
The ubiquity property is a consequence of the ubiquity property for unramified ex-

tensions in exactly the same way that the ubiquity property for unramified extensions
of Qp follows from the ubiquity property for Qp. �

5. Avoidance of Landmark Configurations at a Single Scale: Nondegenerate

Case

Before embarking on our proof, we will make an observation. Suppose that K is ei-
ther R or some non-archimedean local field with residue field Fq. We will briefly con-
sider the roles of r, γ, and σ in the definition of weak approximate landmark pairs. We
observe that if (`1, `2) is a weak approximate landmark pair with parameters (r, γ, σ),
then for any β > 0, (`1, `2) is also a weak approximate landmark pair with parameters
(rβ, γ/β, σ/β). Thus we can assume without loss of generality that r = 2−1 if K = R,
or r = q−1 if K is a non-archimedean local field with residue field Fq. In particular, we
can always assume r−1 is an integer. We will make this assumption henceforth.

We begin by considering functions with some nonzero first-order partial derivative.

Proposition 5.1. Let f : Knv → K, where K is either a non-archimedean local field or R. Let
T1, . . . , Tv be compact subsets of Kn, each of which is a union of essentially disjoint closed cubes

of sidelength rs, and let the strictly differentiable function f (x(1), . . . , x(v)) satisfy

∣∣∣∣∣ ∂ f

∂x(k0)
i0

∣∣∣∣∣ ≥ c

for some i0 and for all (x(1), . . . , x(v)) ∈ T1× · · · × Tv. Suppose (`1, `2) is a weak approximate
landmark pair adapted to the function f on a set containing the projection of each Tj onto each
coordinate axis. Then there exists a small positive real number ε∗ such that for all 0 < ε < ε∗,
there exists c′(ε) with the following property. If j ∈ J is sufficiently large, then there exist sets
S1 ⊂ T1, . . . , Sv ⊂ Tv such that:

(1) There are no solutions to f (x(1), . . . , x(v)) = 0 with x(1) ∈ S1, . . . , x(v) ∈ Sv. Further-
more, f satisfies the lower bound | f (x(1), . . . , x(v))| ≥ c′r(γ+ε)dj on S1 × · · · × Sv.

(2) Let U be one of the cubes of sidelength rs that constitute Tk. Then Sk ∩U is a union of at
least c′r−n(σ−5ε)j disjoint cubes of sidelength c′rdj(γ+ε). Furthermore, for each integer s′
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such that s < s′ ≤ σj− 1000εj, each cube of sidelength rs′ contained in U will contain
at least c′r−n((σ−5ε)j−s′) cubes of sidelength c′rdj(γ+ε). We can further guarantee that
each cube of sidelength rσj will intersect no more than one such cube.

Proof. Throughout this argument, all constants named c or C will depend on ε, f , and
s, but the dependence will be suppressed. Several measures will be taken in order to
guarantee that certain points do not lie near the boundary of a cube; these precau-
tions are unnecessary in non-archimedean local fields and can thus be ignored for that
setting.

Throughout this proof, we will define `w(x) = maxk `w(xk) for any vector x of any
dimension. Consider a cube U of sidelength rs contained in Ti. Given a point y ∈ U
satisfying `1(y) ≤ j, we will define By to be the box of sidelength r(γ+ε)dj centered at y.

We partition U into cubes of sidelength rd(σ−4ε)je. Let V be such a cube. In the
Euclidean setting, we will take V′ to be the slightly smaller cube of sidelength rd(σ−3ε)je

with the same center as V; for non-archimedean local fields we will simply select V′ =
V. The ubiquity condition guarantees that, if j is large enough, V′ will contain at least
one point y such that `1(y) ≤ j. For each V, we pick such a point y(V). Let Y(U) be
the set {y(V) : V is one of the cubes forming U}. Then the cubes {By : y ∈ Y(U)} are
disjoint (as they have sidelength r(γ+ε)dj � r(σ−3ε)j), and each cube of sidelength rσj

intersects only one such cube provided that j is large enough with respect to ε. Let Yk
be the union of the sets Y(U) over all of the cubes U that constitute Tk.

Let y := (y(1), . . . , y(v)) where y(1) ∈ Y1, . . . , y(v) ∈ Yv. In particular, y satisfies
`w(y) ≤ j. Consider the behaviour of f on the product By := By(1) × · · · × By(v) . Because
f has a bounded gradient (say, bounded by C1) on By where the bound does not depend
on y, there exists a constant C1 ≥ 1 such that By maps into a box of side length at most
C1r(γ+ε)dj. Because (`1, `2) is a weak approximate landmark pair for f , it follows that if
ε∗ is small enough, f (y(1), . . . , y(v)) is a within a C2r(γ+2ε)dj-neighbourhood of a point
z satisfying `2(z) ≤ dj + o(j). If j ∈ J is sufficiently large, we can guarantee both that
`2(z) ≤ (d+ ε)j and that C2r(γ+2ε)dj < c/8r(γ+ε)dj. Furthermore, if j is sufficiently large
depending on ε, the separation condition implies that either the image of By avoids a
C1r(γ+ε)dj neighbourhood of 0, or that 0 is the only point z in the image of By satisfying
`2(z) ≤ (d + ε)j. In particular, this means that | f (y)| ≤ c

8r(γ+ε)dj.

Let i0, k0 be such that

∣∣∣∣∣ ∂ f

∂x(k0)
i0

∣∣∣∣∣ ≥ c. We will define Sk to be a union of cubes defined

as follows. If y ∈ Yk for some k 6= k0, let y∗ = y. If y ∈ Yk0 , we instead let y∗ = y +
1
2r(γ+ε)djei0 , where ei0 is the vector with a 1 in the i0 component and zeroes elsewhere.
In either case, take Sk to be the union over all y ∈ Yk of the B∗y , where B∗y is the box
centered at y∗ with sidelength c∗rd(γ+ε)dje, where c∗ is the largest integer power of r
that is less than c

4C1
√

n . For y = (y(1), . . . , y(v)) define B∗y := B∗
y(1)
× · · · × B∗

y(v)
.
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We verify that the sets Sk satisfy the conditions of the Proposition. We will begin
with part 1. Suppose x = (x(1), . . . , x(v)) where x(1) ∈ S1, . . . , x(v) ∈ Sv. We would like
to show a lower bound on | f (x(1), . . . , x(v))|. First, we observe that x ∈ B∗y for some
y ∈ Y1 × · · · ×Yk. We split into two cases depending on whether f (By) contains 0.

If f (By) does not contain 0, then, because x ∈ B∗y ⊂ By, it follows that | f (x)| ≥
C1r(γ+ε)dj.

If, instead, f (By) does contain 0, then we make use of the choice of y∗. Note that

y∗− y = 1
2r(γ+ε)dje(k0)

i0
, where e(k0)

i0
= (0, . . . , 0, ei0 , 0, . . . , 0) with ei0 in the k0 component,

and the n-dimensional 0 vector in the remaining v − 1 components. We have, by as-
sumption, a lower bound of c on the absolute value of the derivative of f in the e(k0)

i0
direction, and a bound of C1 on the gradient of f . Because f is strictly differentiable,
we have that for j sufficiently large,

f (x) ≥ f (y∗)− 17C1

16
|x− y∗|

≥ 7
8
| f ′(y)||y− y∗| − | f (y)| − 17C1

16
|x− y∗|

≥ 7c
16

r(γ+ε)dj − c
8

r(γ+ε)dj − 17C1c
√

n
64C1

√
n

r(γ+ε)dj

≥ 3c
64

r(γ+ε)dj

Therefore, | f (x)| ≥ 3c
64r(γ+ε)dj, as desired. This establishes conclusion 1.

We now prove conclusion 2. Let U Be a constituent cube of Tk. The number of cubes
V in the decomposition above is r−n(d(σ−4ε)je−s), and each cube V contains a cube By∗,
where y = y(V). If Ũ is an arbitrary cube of sidelength rs′ contained in U, then,
provided that j is sufficiently large, Ũ entirely contains at least r−n(d(σ−5ε)je−s′) cubes
By∗ as desired. �

6. Construction of the Set: Avoiding General Landmark Configurations at

Multiple Scales

We now construct the set E promised by the statement of Theorem 2.1. We adopt
a queueing strategy similar to the one described in [3] in order to construct our set.
Without loss of generality, we can assume, possibly by modifying γ or σ if necessary,
that r is as described at the beginning of Section 5.
Stage 0. Let E0 = B where B is as defined as in the statement of 2.1. We can assume B
is a closed cube of sidelength rs0 for some s0. Fix a sequence εj such that εj → 0 and
εj <

σ
1000000 for all j. Select L0 sufficiently large so that the ball E0 can be partitioned

into at least v1 + 1 essentially disjoint cubes of sidelength rL0 . Let B(0)
1 , . . . , B(0)

M0
be an

enumeration of the cubes of sidelength rL0 contained in Bn, and let Σ0 be the family of
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v1-tuples of distinct such cubes, ordered lexicographically and identified in the usual
way with the family of injections from {1, . . . , v1} into {1, . . . , M0}. Let Q0 be the queue
consisting of the 4-tuples

{(1, k, τ, 0) : 0 ≤ k ≤ |α1| − 1, τ ∈ Σ0},

where the queue elements are ordered so that (1, k, τ, 0) precedes (1, k′, τ′, 0) whenever
τ < τ′, and (1, k, τ, 0) precedes (1, k′, τ, 0) whenever k > k′.
Stage 1. At Stage 1, we will consider the first queue element (1, k, τ, 0). Let T(1)

i = B(0)
τ(i)

for all 1 ≤ i ≤ v1.
Let f = Dk f1. By the ordering of Q0, we know that k = |α1| − 1 and therefore

∂ f

∂x
(j1)
i1

= Dk+1 f1 is nonzero for some i1, j1. Furthermore, by compactness, we know that

there is a lower bound, say, rA1 for this derivative on Bn. We select a weak approximate
landmark pair (`1, `2) adapted to f for which the degree is at most d + ε1. Now we
apply Proposition 5.1 to arrive at sets S(1)

1 , . . . , S(1)
v1 . Let ε∗1 be the minimum of ε1 and

the value ε∗ required to apply the proposition. We can select N1 (j in the Proposition)
to be a large number depending on r, N0, n, σ, d, γ, and ε∗1 . The exact requirements on
N1 will be specified later.

Then S(1)
1 ⊂ T(1)

1 , . . . , S(1)
v1 ⊂ T(1)

v1 have the property that Dk f1 is nonzero for xi ∈ S(1)
i ,

where 1 ≤ i ≤ v1. We will define a subset E1 ⊂ E0 in the following way. We take
E1 ∩ T(1)

1 = E0 ∩ S(1)
1 , E1 ∩ T(1)

2 = E0 ∩ S(1)
2 , . . . , E1 ∩ T(1)

v1 = E0 ∩ S(1)
v1 . We decompose

each of the rL0-cubes not contained in T(1)
1 ∪ · · · ∪ T(1)

v1 into rL1-cubes, and retain all of

these subcubes that do not border T(1)
1 ∪ · · · ∪ T(1)

v1 as part of E1. This gives a subset
E1 ⊂ E0 that can be expressed as an essentially disjoint union of cubes of side length
rL1 , where L1 is such that rL1 = c′r(d+ε1)(γ+ε∗1)N1 . We can assume that L1 is an integer
by shrinking the cubes from the proposition slightly if necessary.

Let E1 be the collection of cubes of side length rL1 whose union is E1. Enumerate
the cubes of E1 as B(1)

1 , . . . , B(1)
M1

. For q = 1, 2 define Σ(q)
1 to be the collection of vq-

tuples of distinct such cubes, ordered lexicographically and identified in the usual way
with the family of injections from {1, . . . , vq} into {1, . . . , M1}. We assume N1 has been

chosen sufficiently large that Σ(q)
1 is nonempty for q = 1, 2. We then form the queue Q′1

consisting of 4-tuples of the form

{(q, k, τ, 1) : 1 ≤ q ≤ 2; 0 ≤ k ≤ |αq| − 1; τ ∈ Σ(q)
1 }

arranged so that (q, k, τ, 1) precedes (q′, k′, τ′, 1) if q ≤ q′, so that (q, k, τ, 1) precedes
(q, k′, τ′, 1) if τ < τ′, and so that (q, k, τ, 1) precedes (q, k′, τ, 1) if k > k′. We arrive at
the queue Q1 by appending the queue Q′1 to Q0.
Stage j. We will now describe Stage j of the construction for j > 1. We follow essentially
the same procedure as in Stage 1. We begin with a decreasing family of sets E0, . . . , Ej−1.
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Each Ej′ is a union of cubes of sidelength rLj′ , the collection of which is called Ej′ . The

family of vq′-tuples of distinct cubes in Ej′ will be denoted Σ(q′)
j′ . We have a queue Qj−1

consisting of 4-tuples (q′, k′, τ′, j′) where we have 0 ≤ j′ ≤ j− 1, 1 ≤ q ≤ j′+ 1, 0 ≤ k′ ≤
|αq′ | − 1, and τ′ ∈ Σ(q′)

j′ . The set Ej−1 has the property that Dk′ fq′(x1, . . . , xvq′ ) 6= 0 for

x1 ∈ B(j′)
τ′(1) ∩ Ej−1, . . . , xvq′ ∈ B(j′)

τ′(vq′ )
∩ Ej−1 for any (q′, k′, τ′, j′) in the first j− 1 elements

of the queue Qj−1.
Consider the jth queue element (q, k, τ, j0), where q ≤ j0 � j. We will consider two

cases: the case in which k = |αq| − 1, and the case in which k < |αq| − 1.
Case 1: k = |αq| − 1. Let f = D|αq|−1 fq. In this case, we have that k + 1 = |αq|; therefore,
it follows by assumption that D|αq| fq is nonzero on all of T1 × · · · × Tv. Let rA be the
lower bound on this partial derivative. By assumption, we have a weak approximate
landmark pair (`1, `2) for f of degree less than d + εj. We then apply Proposition 5.1
with the quantity Nj (j in the proposition) taken to be a large number depending on
r, Nj−1, n, σ, d, γ, and ε∗j . Here, ε∗j is the minimum of εj and the value of ε∗ occurring in
the proposition. The specific requirements for the choice of Nj will be specified later.
Case 2: k < |αq| − 1. Let f = Dk fq. If k < |αq| − 1, then, by the ordering of the elements
of the queue Qj−1, we will have that the j − 1st element of Qj−1 is (q, k + 1, τ, j0).
Therefore, by the previous stage, we have that for x1 ∈ T1, . . . , xv ∈ Tv that Dk+1 fq is
nonzero. But this implies by compactness that there exists some A such that Dk+1 fq is at
least r−A in absolute value on all of T1 × · · · × Tv. Furthermore, we have assumed that
f has a weak approximate landmark pair of degree at most d + εj. Apply Proposition
5.1 to the sets T1, . . . , Tv with the quantity Nj (j in the proposition) chosen to be a very
large number depending on r, Nj−1, n, σ, d, γ, and ε∗j . Here, ε∗j is the minimum of εj
and the value ε∗ required to apply the proposition. The specific requirements for the
choice of Nj will be specified later.

In any case, we arrive at sets S(j)
1 ⊂ T(j)

1 , . . . , S(j)
vq ⊂ T(j)

vq , such that Dk fq is nonzero

for (x(1), . . . , x(vq)) ∈ S(j)
1 × · · · × S(j)

vq . We define a subset Ej ⊂ Ej−1 in the following

way. We take Ej ∩ T(j)
1 = Ej−1 ∩ S(j)

1 , Ej ∩ T(j)
2 = Ej−1 ∩ S(j)

2 , . . . , Ej−1 ∩ T(j)
vq = Ej ∩ S(j)

vq .

We split the cubes of sidelength rLj−1 not contained in T(j)
1 ∪ · · · ∪ T(j)

v into cubes of

sidelength rLj ; the cubes that do not border T(j)
1 ∪ · · · ∪ T(j)

vq will be retained as part of
Ej. This gives a subset Ej ⊂ Ej−1 that can be expressed as a disjoint union of cubes of

sidelength rLj , where Lj is the smallest integer such that rLj ≤ c′r(d+εj)(γ+ε∗j )Nj . Call the

collection of such balls Ej, and let B(j)
1 , . . . , B(j)

Mj
be an enumeration of the balls in Ej. For

each 1 ≤ q ≤ j, we define Σ(q)
j to be the collection of vq-tuples of distinct balls in Ej.

We assume that Nj has been chosen sufficiently large in order to guarantee that these

sets will be nonempty. We equip Σ(q)
j with the lexicographic order and identify Σ(q)

j
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with the set of injections from {1, . . . , vq} into Ej. Consider the queue Q′j consisting of

4-tuples (q, k, τ, j) where 1 ≤ q ≤ j + 1, 0 ≤ k ≤ |α|q − 1, and τ ∈ Σ(q)
j . We order the

queue Q′j in the following way: (q, k, τ, j) will precede (q′, k′, τ′, j) if q < q′, (q, k, τ, j)
precedes (q, k′, τ′, j) if τ < τ′, and (q, k, τ, j) precedes (q, k′, τ, j) if k > k′. We append
the queue Q′j to Qj−1 to arrive at the queue Qj.

The set E is given by E = ∩∞
j=1Ej.

6.1. Hausdorff Dimension of E. We now outline the computation of the Hausdorff
dimension of the set E. In order to compute the Hausdorff dimension of this set, we
use a version of Frostman’s lemma. The goal is to construct a Borel probability measure
µ supported on E such that µ(I) .ε l(I)

nσ
dγ−ε for every cube I with side length l(I). The

existence of such a measure would imply that the Hausdorff dimension of E is at least
nσ
dγ .

We will now describe the construction of the measure µ. µ will be obtained as a
weak limit of measures µj supported on the sets Ej. We begin by defining µ0 to be the
uniform probability measure on the set E0. Decompose E0 into subcubes of sidelength
rb(σ−1000ε∗1)N1c, and split the mass of E0 evenly among such cubes.

Let J be such a cube. Then there are two possibilities: either J is contained in some
T(1)

i for some 1 ≤ i ≤ vq1 , or Ti is essentially disjoint from T(1)
i for all i. If J is contained

in a cube of T(1)
i , then part 2 of Proposition 5.1 states that there are at least c′r−995ε∗1 N1

and at most r−1000ε∗1 N1 cubes of radius rL1 contained in J that are retained as part of E1.
The second case is the case in which the cube J is essentially disjoint from the sets

T(1)
i . In this case, all of the subcubes of J of side length rL1 that do not border any of the

sets T(1)
i are retained. If N1 is chosen sufficiently large, this will be at least half of the

subcubes of J of sidelength rL1 . The measure µ1|J is obtained by splitting the measure
of J evenly among each of these surviving cubes.

We continue this procedure inductively. Suppose we have a probability measure µj

supported on Ej. The set Ej is a union of cubes of sidelength rLj . We will describe
the construction of the measure µj+1 from µj as follows. We will decompose each of
the rLj-cubes that constitute Ej into a union of essentially disjoint cubes of side length

rb(σ−1000ε∗j+1)Nj+1c. Each such cube will receive the same share of the parent cube’s
measure.

Let J be one of these cubes of sidelength rb(σ−1000ε∗j+1)Nj+1c. There are two possibilities:
either J is contained in some T(j+1)

i , or J is essentially disjoint from all of the sets T(j+1)
i ,

for 1 ≤ i ≤ vqj+1 .

If J is contained in some T(j+1)
i , then J ∩ Ej+1 is a union of cubes of sidelength rLj+1 .

We observe that the number of such cubes contained in J is at at least c′r−995ε∗j+1Nj+1

and at most r−1000ε∗j+1Nj+1 . If J is not contained in any of the T(j+1)
i , then J is essentially
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disjoint from the T(j+1)
i , and, provided Nj+1 is large enough, at least half of the sub-

cubes of J of sidelength rLj+1 are retained. In either case, we distribute the measure of
J evenly among all of the surviving subcubes of sidelength rLj+1 contained in J.

We claim that the measures µj have a weak limit µ, which satisfies the Frostman
condition. It is clear that the measures µj have a weak limit because they are defined
via a mass-distribution process. We will show that this weak limit µ satisfies the Frost-
man condition. First, we will show that the Frostman condition with dimension nσ

dγ is
satisfied for the basic cubes in the construction.

Let I ∈ Ej, and let J ∈ Ej+1 be contained in I. We will consider two cases: the case

in which I ⊂ T(j+1)
i for some i, and the case in which I is essentially disjoint from

the sets T(j+1)
i . We observe that it is enough to obtain an estimate for µj+1(J), because

µj′(J) = µj+1(J) for all j′ ≥ j + 1.

Case 1: I is contained in T(j+1)
i for some i. In this case the measure of I is split evenly

among the subcubes of sidelength rb(σ−1000ε∗j+1)Nj+1c. Each of these subcubes will there-
fore have measure µj(I)rn(Lj−b(σ−1000ε∗j+1)Nj+1c). Each such cube will contain at least

c′r−b995nε∗j+1Nj+1c cubes with the same µj+1-measure as J. Thus the µj+1-measure of J is
at most

c′−1µj(I)r−nLj+nb(σ−1000ε∗j+1)Nj+1c+b995nε∗j+1Nj+1c.
After combining terms, we get an estimate of

µj+1(J) ≤ c′−1µj(I)r−nLj+n(σ−5ε∗j+1)Nj+1−n.

We can choose Nj+1 sufficiently large so that c′−1µj(I)r−nLj−n ≤ r−nε∗j+1Nj+1 . Then we
get the estimate

µj+1(J) ≤ rn(σ−6ε∗j+1)Nj+1 .

But J has sidelength r(d+εj+1)(γ+ε∗j+1)Nj+1 . Thus

µj+1(J) ≤ `(J)

n(σ−6ε∗j+1)

(d+εj+1)(γ+ε∗j+1) .

the exponent approaches nσ
dγ as j→ ∞, as desired.

Case 2: I is essentially disjoint from the T(j+1)
i . In this case, we have the inequality

µj+1(J) ≤ 2rn(Lj+1−Lj)µj(I)

but Nj+1 can be chosen sufficiently large so that 2µj(I)r−nLj < r−nεj+1Lj+1 , so we get the
estimate

µj+1(J) < rnLj+1(1−εj+1).
This estimate is at least as good as the desired estimate because d ≥ 1 and σ ≤ γ.

Now that we have proven the Frostman bound for the case where I is a basic cube
of the construction, it remains to show the Frostman estimate for arbitrary cubes I. As

Online Journal of Analytic Combinatorics, Issue 15 (2020), #04



24 ROBERT FRASER

µ is a probability measure, we can restrict ourselves to the case for which l(I) < rL1 .
In particular, this means that there is some j ≥ 1 such that rLj+1 ≤ l(I) < rLj . We
will consider two cases: the case in which rb(σ−1000ε∗j+1)Nj+1c ≤ l(I) < rLj , and the
complementary case in which rLj+1 ≤ l(I) < rb(σ−1000ε∗j+1)Nj+1c.
Case 1: rb(σ−1000ε∗j+1)Nj+1c ≤ l(I) < rLj . Let L be such that l(I) = rL. In this case, I ∩ E
can be covered by at most Crn(L−b(σ−1000ε∗j+1)Nj+1c) cubes of sidelength rb(σ−1000ε∗j+1)Nj+1c

occurring in step j+ 1 of the construction for some constant C depending only on n and
r. Each of these cubes is known to have µ-measure at most µ∗j rn(b(σ−1000ε∗j+1)Nj+1c−Lj),

where µ∗j is the maximum µj-measure of any basic cube of sidelength rLj . Multiplying,

we get that the µ-measure of I is at most Cµ∗j rn(L−Lj). But we have already established

that Cµ∗j ≤ r
(

nσ
dγ−C′εj

)
Lj for some appropriate constant C′. Therefore, we get that µ(I) ≤

rn(L−Lj)+
(

nσ
dγ−C′εj

)
Lj . We rearrange this expression to get r

nσ
dγ L+

(
n− nσ

dγ

)
(L−Lj)−C′εjLj . First,

we observe that
(

n− nσ
dγ

)
(L− Lj) is nonnegative, and thus the expression can only be

made larger by removing this term. Second, because L > Lj, we have that r−C′εjLj ≤

r−C′εjL. Thus we get µ(I) ≤ r
(

nσ
dγ−C′εj

)
L. The coefficient on L approaches nσ

dγ as j → ∞,
as desired.
Case 2: rLj+1 ≤ l(I) < rb(σ−1000ε∗j+1)Nj+1c. By splitting I into On(1) parts, we may assume
either I ⊂ T(j+1)

i for some I, or that I is essentially disjoint from these sets.

We begin with the case where I is contained in some T(j+1)
i . In this case, I is con-

tained in a union of at most On(1) of the cubes of side length rb(σ−1000ε∗j+1)Nj+1c from
Proposition 5.1. Therefore, up to an On(1) loss, we can assume that I is entirely con-
tained in one of these cubes.

Let L be such that I has side length rL. Then, by Part 2 of Proposition 5.1, I intersects
at most max(rn(L−σNj+1), 1) of the cubes of side length rLj+1 .

If L < σNj+1, it follows that µ(I) ≤ r(L−σNj+1)n+Lj+1(
nσ
dγ+Cεj+1). Using the relationship

between Lj+1 and Nj+1, this is at most rLn−C′εj+1Nj+1 for some appropriate C′ depending
on n, d, σ, and γ. But L > (σ− 1000ε∗j+1)Nj+1, so this is no more than rL(n−C′′εj+1) for
an appropriate C′′ depending on n, d, σ, and γ. Notice that in this subcase we in fact
get a bound that may be much smaller than rL nσ

dγ .
If L ≥ σNj+1, then I intersects at most 1 cube of side length rLj+1 . This cube has

measure at most r(
nσ
dγ−Cεj+1)Lj+1 , and thus µ(I) ≤ r(

nσ
dγ−Cεj+1)L as desired since Lj+1 > L.

We now consider the case where I is essentially disjoint from the T(j+1)
i . In this case,

I intersects at most rn(L−Lj+1) of the cubes of sidelength rLj+1 that were retained as part
of Ej+1. Each of these cubes has µj+1-measure at most rnLj+1(1−εj+1). We multiply and
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conclude that
µj+1(I) ≤ rnL−εj+1Lj+1 ≤ r(n−Cε)L

because L > (σ− 1000ε∗j+1)Nj+1, and thus L > C−1Lj+1 for some appropriate constant
C.

7. Application to angle-avoiding sets

Máthé [5] established the following fact:

Theorem 7.1. [Angle-Avoiding Sets, Máthé] Let n ≥ 2, and let α ∈ (0, π) be such that
cos2(α) is rational. There exists a compact set E ⊂ Rn of Hausdorff dimension n/4 such that
E does not contain three points forming an angle α.

Theorem 2.1 can be used to extend this result to all angles α for which cos α is
algebraic.

Theorem 7.2. [Angle-Avoiding Sets, Algebraic Case] Let n ≥ 2, and let α ∈ (0, π) be such
that cos α is algebraic. Then there exists a compact set E ⊂ Rn of Hausdorff dimension n/4
such that E does not contain three points forming an angle α.

Proof. The proof is similar to the one in [5]. We observe that three points x, y, z ∈ Rn

form an angle α if they satisfy

(y− x) · (z− x) = |y− x||z− x| cos α.

We square both sides of this equation in order to turn the equation into a polynomial.

((y− x) · (z− x))2 = |y− x|2|z− x|2 cos2 α.

We then use the landmark system provided in Example 3.2 together with Theorem
2.1 to conclude the desired result. �

Máthé [5] proceeds to construct a set of Hausdorff dimension n/8 that avoids an
arbitrary angle α by finding a polynomial with rational coefficients that vanishes on
triples of points (x, y, z) that form an angle α. We now show that this example is
typical.

Theorem 7.3. Let p : Rnd → R be a polynomial of degree d whose coefficients lie in a 2-
dimensional vector space over Q of the form Q + Qt for some number t. Then there exists a
subset of Rn of Hausdorff dimension n

2d that does not contain any v distinct points x1, . . . , xv
such that p(x1, . . . , xv) = 0.

Proof. By multiplying by an appropriate integer, we can assume the coefficients of p are
in the finitely-generated free module Z+ tZ. We assume the coefficients of p are of the
form a + bt, where a and b are integers. By Dirichlet’s principle, there exist infinitely
many pairs of integers (r, q) such that |t − r/q| ≤ q−2. Therefore, the coefficients of
p are simultaneously approximable to degree 1: a + bt is within bq−2 of the rational
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number aq+br
q . The same can also be said for all derivatives of the polynomial p. Using

Theorem 2.1 together with Example 3.4 gives the desired result. �

This theorem can be extended in a trivial way:

Theorem 7.4. Let p(x1, . . . , xv) be a polynomial of degree d whose coefficients lie in a k-
dimensional vector space over Q of the form Q+Qt1 + · · ·+Qtk−1 for some numbers t1, . . . , tk−1.
Then there exists a set of Hausdorff dimension n

dk that does not contain any v distinct points
x1, . . . , xv such that p(x1, . . . , xv) = 0.

8. Polynomials in Non-archimedean Settings

We can apply Theorem 2.1 to conclude the following.

Corollary 8.1. Let p : Knv → K be a polynomial of degree d on a non-archimedean local field
with integer coefficients. If K has characteristic 0, or if d < char K, then there exists a subset
of Kn with Hausdorff dimension n/d that does not contain any v distinct points such that
p(x(1), . . . , x(v)) = 0.

This follows from Theorem 2.1 because any polynomial of degree d, where d <
char K, will have a partial derivative of degree at most d that is equal to a constant.
The condition d < char K is necessary for this observation to work: finite characteristic
it is possible for a nonconstant polynomial of degree ≥ char K to have a derivative of
zero. However, if p is a degree d polynomial where d < char k than some appropriate
dth partial derivative will be constant and nonzero and the assumptions of the theorem
will therefore be met.

An important example of this occurs when n = 1 and p(x, y, z) = x− 2y + z. This is
a polynomial that selects for three-term arithmetic progressions. In this case, Theorem
8.1 states that there is a subset of K with Hausdorff dimension 1 that does not contain
any nondegenerate 3-term arithmetic progressions.

We focus especially on the case in which K is the function field F3((t)). The unit
ball, F3[[t]], is isomorphic as a topological abelian group to the projective limit of the
finite abelian groups (Z/3Z)n, and thus the problem of finding large subsets of F3[[t]]
without 3-term arithmetic progressions serves as a limiting case of the capset problem.
The capset result states that for sufficiently large n, every subset of (Z/3Z)n with at
least 2.756n elements contains a 3-term arithmetic progression [2]. However, Corollary
8.1 gives a subset of F3[[t]] with Hausdorff dimension 1 that does not contain any 3-
term arithmetic progressions, so a Hausdorff dimension analogue of the finite capset
result does not hold in the limiting case. The author will consider the problem of a
limiting capset result for Fourier dimension in a future work.
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