THE COSET AND STABILITY RINGS
TOM SANDERS

ABsTRACT. We show that if G is a discrete Abelian group and A < G has [[14[pg) <M
then A is O(exp(7tM))-stable in the sense of Terry and Wolf.

In [TW19] Terry and Wolf, inspired by ideas in model theory, introduce the notion
of stability for sets in Abelian groups, and very quickly after there followed a number
of papers building on their work e.g. [CPT17, |IAFZ19, Sis18] and [TW18]. In this note
we develop a relationship between stability and the Fourier algebra.

Suppose that G is a (possibly infinite) Abelian group. Following [TW18, Definition
1], for k e N we say A c G has the k-order property if there are vectors a,b € G* such
that a; + bj € A if and only if i < j. If A does not have the k-order property it is said to
be k-stable. Note that the order property is monotonic so if A has the k-order property
then it has the (k — 1)-order property (for k > 2), and mutatis mutandis for stability.

Write S)(G) for the set of subsets of G that are /-stable and S(G) for their union over
all I € IN. We begin with some examples from [TW19]:

Lemma 1.1 (The empty set and cosets). S1(G) = {J} and S»(G) = $1(G) v Uy<c G/H.

Proof. The first equality is immediate. For the second, from [TW19, Example 1 &
Lemma 2] (or Lemma [1.5] later) we have | J;.c G/H = $(G). And conversely if A
is 2-stable and x,y,z € A then putting a; = x, a = y, by = z — x and by = 0g we see
that a; + by, a1 + by, ap + by € A by design. Since A does not have the 2-order property it
follows thaty +z—x =a; + b € A,andso A+ A — A < A and if A is non-empty it fol-
lows (by e.g. [Rud90, §3.7.1]) that A is a coset of a subgroup. The result is proved. [J

More interesting than the examples, Terry and Wolf show that $(G) has a ring struc-
ture. Recall that R is a ring of subsets of G if R < P(G) is closed under complements
and finite intersections (and hence finite unions). The prototypical example is P(G)
itself; [TW19, Lemmas 1 & 2] give the following.

Theorem 1.2 (Terry—Wolf Stability Ring). Suppose that G is an Abelian group. Then S(G)
is a translation-invariant ring of subsets of G.

It may help to compare this with e.g. [TZ12, Exercise 8.2.9], the folklore fact that the
set of stable formulas is closed under boolean combinations.

We write W(G) for the coset ring of G, that is the minimal translation-invariant ring
of sets containing all cosets of subgroups of G. The coset ring has received attention
in harmonic analysis (see [Rud90, Chapters 3 and 4]), and in view of Lemma and
Theorem [1.2) we have W(G) < S(G); it is natural to ask whether we have equality.
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For any A ¢ G we have A = | J,.4 (x + {0g}) and so if G is finite any set is a finite
union of cosets of subgroups of G and in particular W(G) = S§(G), but if G is not finite
then things may be different. To see this we need a new example of sets of low stability.

Followingﬂ [Cil12] Definition 1] we say a set A < G is a Sidon set (also known as a
By-set) if whenever x —y = z — w for some (x,y,z,w) € A* we have x = yorx=z.

Lemma 1.3 (Sidon sets are 3-stable). Suppose that G is an Abelian group and A < G isa
Sidon set. Then A is 3-stable.

Proof. Suppose that a,b € G® witness the 3-order property in A. Then a; + bj e A
whenever i < j, and so (aj + by, a1 + b3, ap + by, ap + b3) € A%. But then

(a1 + bz) — (Lll + b3) = bz — bg = (Elz + bz) — (az + bg),

so by Sidonicity either a; + b, = a1 + bz and we have by, = b3; or a1 + by = a; + by and
we have a; = a,. In the former case we have a3 + b, = a3 + b3 € A — a contradiction.
In the latter we have that a, + by = a7 + b; € A — a contradiction. It follows that A is
3-stable. O

On the other hand there are (at least if |G| > 3) sets in S3(G)\S2(G) that are not
Sidon, for example a subgroup of size at least 4 with the identity removed

The set 7 := {1,3,9,27,...} is an example of an infinite Sidon set in the integers.
While stability need not be preserved by passing to subsets, Sidonicity is and so every
subset of 7 is also Sidon and a fortiori 3-stable, so S(Z) is uncountable. On the other
hand there are countably many cosets of subgroups of Z and so W(Z) is countable,
and we conclude that S(Z) # W(Z).

In view of the above discussion it is tempting to ask for families of sets in Sk, 1(G)
that are not in the ring generated by Sx(G) for k > 2 — the ‘“irreducible” elements of
Sk1(G).

Cohen’s idempotent theorem [Rud90, §3.1.3] tells us that WW(G) is equal to the
Fourier algebra A(G). To define the latter we take G to be discrete and write G for
the compact Abelian dual group of homomorphisms G — S! := {z € C : |z| = 1}, and

A~

if y e M(G) put
p(x) = J/\(x)d]/l(/\) for all x € G.

For f : G — C, if there is some y € M(G) such that f = i then yu is unique [Rud90,
§1.3.6] and we put

IFlscc) o= Il := f iyl

1Deviating from other definitions e.g. [IV06) Definition 4.26] if G has 2-torsion.

2Such a set is the intersection of a subgroup with the complement of a subgroup. The former is 2-
stable (as recorded in Lemmal/l.1)); the latter is 3-stable since subgroups are 2-stable and the complements
of k-stable sets are (k + 1)-stable by [TW19, Lemma 1]. It follows by [TW19, Lemma 3] that the resulting
intersection is 3-stable. On the other hand it is not a coset of a subgroup, and so not 2-stable, and not
Sidon since if A is a Sidon subset of a group H then |A|?> — |A| + 1 < |H|, but (|H| —1)> - ([H| - 1) +1 >
|H|.
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With this we write
A(G) :={A = G:|1alpc) < »},
which it turns out is a translation-invariant [Rud90, §1.3.3 (c)] ring of sets [Rud90,
§3.1.2].
Since A(G) = W(G) = S(G), we see that if [14p) < oo then A € §(G), and it is
natural to wonder if there is a universal monotonic F : R>; — IN such that

(1.1) ITallcy < M = A € Spn)(G).

There is fairly direct approach via a quantitative version of Cohen’s theorem. To
describe this we make a definition: given H < G and § < G/H we writﬂ S* =
S u {—JS§}, that is the partition of G into cells from S and an additional cell that
is everything else. We say that A has a (k, s)-representation if there are subgroups
Hi,...,Hy < G, and sets S1 € G/Hy,...,Sr € G/Hj of size at most s such that A is the
(disjoint) union of some cells in the partitiorﬁ S A nSE.

Theorem 1.4 (Quantitative idempotent theorem, [GS08, Theorem 1.2]). Suppose that
I1allpcy < M. Then A has a (k, s)-representation where

k< M+0(1) and s < exp(exp(O(M*))).

The arguments of Terry and Wolf are also quantitative, and we record some of them
in a slightly stronger form than they state. We begin with a slight extension of [TW19,
Example 1].

Lemma 1.5 (Unions of cosets). Suppose that H < G and S < G/H has size s. Then | JS is
(s + 1)-stable.

Proof. Suppose that a,b € G**! witness the (s + 1)-order property in | JS. By the pi-
geonhole principle there is some 1 < i < j < s + 1 such that a; + b; and a; + b; are
in the same coset of H, whence b; + H = b; + H. Since a; +b; € [ JS we see that
aj+bje|JS+H ={JS§, a contradiction since j > i. O

In general the above lemma is best-possible as the next lemma shows when G = Z,

H = {0}, and S is the set of size-one subsets of an arithmetic progression.

Lemma 1.6 (Arithmetic progressions). Suppose that A is an arithmetic progression of inte-
gers of size r. Then A has the r-order property.

Proof. Write A = {x,x+d,...,x+(r—1)d},and lets; :=x—idand t; = id for 1 <i <.
Thens; +tj = x + (j —i)d € A if and only if i < j, and so the vectors s, t € Z" so defined
witness the r-order property in A. (c.f. [Sis18, Lemma 6.3].) O]

Quantitatively [TW19, Lemma 1] is about as good as one could hope — it says if A is
s-stable then —A is (s + 1)-stable — however we shall combine it with a multi-set version
of [TW19, Lemma 2].

3For S < G we write —S := G\S.
4Recall that if P and Q are partitions of the same setthen P A Q:={PnQ:PeP,Qe Q}.
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Write r(kq, ..., ky) for the smallest natural number such that in any m colouring of
the complete graph on r(ky, ..., k) vertices there is some 1 < g < m such that the gth
colour class contains a complete graph on k; vertices.

Lemma 1.7. Suppose that \ J;'y Aq has the r(ky +1,... ky + 1) + 1-order property. Then
there is some 1 < q < m such that A, has the kg-order property.

Proof. Write N := r(ky +1,...,ky + 1). Since UZ1=1 Aj has the (N + 1)-order property
there are vectors a,b € GN*! 5o that we can colour the vertices of the complete graph
on {1,...,N} by giving the edge ij (for 1 <i < j < N) the colour of the smallest g such
that a;,1 + bj € A; — this is an m-colouring of the complete graph on N vertices.

By definition there is some 1 < g < m and a sequence 1 <s1 < -+ <5, 1 < N with
as;41+ bs; € Ag forall 1 <7 < j < kg +1. On the other hand whenever N >i>j>1
we have a1 + b; ¢ {J,, Ay by the N-order property of ( J, An, and hence 45,11 + bs; ¢ Aq
whenever k; +1 > i > j > 1. Finally let a} := a,,41 and b} := b, , for all 1 <i < k,, and
note that a; + b;. € Aq if and only if i < j as required. O

We now use this lemma to compute an upper bound on the stability of a set in the
coset ring based on the complexity of its representation. To do this we need a bound
on the multicolour Ramsey numbers. The usual Erd6s-Szekeres argument gives (see
e.g. [GG55| Corollary 3]) that

(k1 + -+ km)!

kile e kp!
Suppose now that A has a (k, s)-representation as described before Theorem Then
each of the sets —J S; is s + 2 stable by Lemma [1.5|and [TW19, Lemma 1], so each cell

in the partition Sf A --- A §F is an intersection of k sets of stability at most s + 2. It
follows from Lemma|[I.7]and (1.2) that A is t-stable where

(s+1)* times

A

(1.2) rlky+1,.. . ky+1) <

t<r(r(s+3,...,5+3)+2,...,7(5+3,...,5+3) +2) +2
P S—
k times

(s+1)* times

A

<r(kt2 42, k2 4 ﬁ) 2 < K
Plugging Theorem [1.4]into this shows that one may take F in with
(1.3) F(M) = exp(exp(exp(exp(O(M"))))).

On the other hand, in some situations we can do far better: if A is finite and G is
torsion-free then McGehee, Pigno and Smith’s solution to Littlewood’s conjectureﬁ
[MPS81], Theorem 2] applies to show that if [14[/pg) < M then [A| = exp(O(M)). It
follows from Lemma [1.5that A is exp(O(M))-stable. This is far better than the bound

5This theorem extends to G connected as noted in [MPS81), §3, Remark (i)], and G is connected since
G is torsion-free by [Rud90, Theorem 2.5.6(c) & Theorem 1.7.2]).
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in (1.3) and it is the main purpose of this note to prove a bound of this strength directly
and in full generality:

Theorem 1.8. Suppose that G is a (discrete) Abelian group and A = G has ||14|p) < M.

Then A is (coexp(tM) + 1)-stable where cy := 2 *exp(—y)m = 0.110... and v is the
Euler—Mascheroni constant.

Proof. Suppose that a,b € GF witness the k-order property and consider
k

k
p;g’é —>€’§;UH <Z 1A(ﬂl+bm)vm> ,
I

m=1 =1

where /5 denotes k-dimensional complex Hilbert space.

We compute the trace norm of P in two ways: one showing it is large by direct
calculation as it is just the trace normﬁ of (a variant of) the adjacency matrix of the
half-graph; on the other hand it is small as a result of the hereditary smallness of the
algebra norm.

Since a and b witness the order property, writing Q for the matrix of P with respect
to the standard basis we have Q;; = 1 if i < j and 0 otherwise. It happens to be easier
to deal with Q~!; for reference (which can be easily checked)

1 0 - ... 0
.o ) -1 1
Q=| 0 andQ'=| 0 -1 1
: : —_— 0
0 0 -1 1
It follows that
1 -1 0 --- 0
1 2 -1 :
Q' M= o0 -1 2 0
»
0 0 -1 2

Lew = exp <22kn—+”1> and v := (w,...,w") so
QO M@+ =2-w-w(v+79)

Of course 2 — w — w™! = 4cos? (% which takes k distinct values as 1 < j < k. It

follows that the eigenvalues of P~!(P~1)* are exactly the numbers 4 cos? (%) for
®The trace norm of the adjacency matrix of a graph is sometimes called the graph energy [Gut78].

7Similar spectral computations to those here may be found in e.g. [BH12) §1.4.4], though we followed
[EIK1T].
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1 < j < k, and hence the eigenvalues of (P~Y(P~ 1)*) 1 = P*P are the reciprocals

of these. These reciprocals, 1/4cos <2k +1> for 1 < j < k, are themselves distinct

and so have corresponding unit e1genvectors o, ...,k (of P*P) which are mutually
perpendicular, as are the unit vectors w, ..., w® defmed through
. 1 , '
pol) = wl for1<j<k

2cos <2IZ1>
Since [14]/p(G) < M there is some y € M(é) with [u| < M and 14 = j so, in particular,
(1.4) Ala;+by) f/\ apA (A) forall1 <I,m <k.

Let A%, AP € (X be defined by Af := Alay) and Ab = A(=by,) for 1 < 1,m < k so that
HMHg; = | Ab“e’g = k. Then by and linearity we have

k

('), Pyl >£k—2wl Z (a; + bp) )

_ f (Z w;w_al)) (2 A(bmw%)) dp(A)

J(w /\“>€k</\b >£kd}l f(w /\“}Ek@ )L>gkd}/l()

and hence (noting the left hand side is real so that the inequality makes sense)

k k
15) Y@, Poyy < [ Y], A%y, AL gldlul(A)
j=1 v =1

k 2 k :
[ (Z <w<f>,M>€§2) (Z <U(j)/)\b>g1£2> d|pl(A)
S \ja j=1

= [ 1Ay IA et () < M.

N

This last equality is Parseval’s identity (or the generalised Pythagorean theorem) ap-
plied with the two orthonormal bases (w(j));.‘=1 and (v(f));?zl and the vectors A* and A?
respectively.
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In the other direction we have

k k 1 1 k-1 1
J = = =
Z<w POV = Z in > SIS
j=1 =12 ’COS 2k+1‘ 1=0 S 302%+1)
k41O 1

m H2+1

—i—lk_l(csc(n 2l+1) 2 >

2 n N 2041 |-

2 = 2 2k+1 T- ﬁ
The function x ~— csc (¥x) — -2 is an increasing function on [-Z, 7] and so we can

apply a standard integral estimate (the details of which we omit) to see that

1"21 o (T ALY 2 _%k+1(2, 4 3
24 2 2%+1) 7.2 ) 7 T4 \7®n m@kr1))

Again, omitting details, one can use inequalities of Téth [PMW 91, Problem E3432(i)]
to estimate the harmonic numbers (the nth of which we denote by H;) and get

k+1' 1 2k +1 1 2k +1
_ Hop — =H, | > ] log4 + 7).
7 Z;)ZZ+1 7 ( %5 ") 2 Uogktlogd )

In view of these two calculations we conclude that

(). Pl k 11
j;@) , Pv >£;§>; log kc,, %)

Finally, exp(—x) > 1 — x and so the above along with rearranges to give the result.
O

In the other direction we have the examples afforded by intervals.

Example 1.9. Suppose that k € N and G := Z. Then there is a set A < G such that A is
at best (k + 1)-stable (meaning A has the k-order property) and writing M := |[14]p(g)
has

2 © 2
k+1=>=ciexp <%M) wher c1:=2"2exp(—7) H m -1 = 0.087....

m=1

Proof. Put A :={1,...,k}. A short calculation shows that

1| k 1 -

, sin(7tk0
M = J Z exp(27ting)|df = J |_(—)|d6
0 0 sin 7160
n=1
__2
85, a_ AT m w1 =215, 4;12%112 = 0.789..., where ¢y is the constant in Theorem (1.8
4m  4m=—1
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Szeg6 in [Sze2l, (R)] gives a beautiful evaluation of this quantity (in fact the cited
formula is for k odd, but the same argument works for any k as noted in [Sze21)
Remark 2, §3]):

1 |sln(7'(k9)|d6 _ 1_6 i Hka_ %Hmk
o sinrf

g = logmk+’y+log4+m
<z
2 4m? —1

logm 1
(logk+’y+log4 P Z y 47r2k2

where the first inequality follows from the inequahtles of T6th [PMW 791, Problem
E3432(i)]. By Lemma A has the k-order property and the result is proved. O

Thus certainly the exponent 7t in Theorem cannot be improved past %2. That
being said, the fact that these two numbers are close leads one to wonders if the proof
of Theorem [1.8 above is amenable to improvement by direct analysis in the case that
we are close to equality in the inequalities used.

As far as we know a better result than Theorem (1.8 may be true in the model setting
G = IF} where there are no large arithmetic progressions - the set used in Example

Since S(Z) # A(Z) we know that there is no converse to Theorem[1.8| The following
example (c.f. [Fab93]) shows that this is so in essentially the worst possible way.

Example 1.10. Suppose g is a prime power. Then for G := Z/(q> + q + 1)Z there
is a Sidon (and a fortiori 3-stable) set A = G of size g + 1 such that [14]p) =

Al =1+ 0pa e (1).
Proof. The perfect difference set construction of Singer [Sin38, p381] gives a set A of
size g +1in G := Z/(q*> + q + 1)Z that is a Sidon set and a direct calculation shows that
14 = ji for p € M(G) with
g+1
[l = 22inog + g o).

PHqg+1

It follows that
. q+1 7 +q
T Figil g +q+1f_ 7+ 0p—ao(l

as claimed. H

11alBG)

Note if A is 2-stable then it is a coset of a subgroup (or empty) and so |14 p(c) < 1.
On the other hand a careful accounting of the constants in [Bou93| (3.3)] shows that

any finite A = G has |14]|p(c) < \/|A\ — 1+ 0j4|-0(1) which matches our bound above

up to the little-o term. In other words 3-stable sets can have algebra norm essentially
as large as possible for their size.
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