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Abstract. We introduce a polygonal cylinder Cm,n, using the Cartesian product of paths
Pm and Pn and using topological identification of vertices and edges of two opposite
sides of Pm × Pn, and give its Hosoya polynomial, which, depending on odd and even
m, is covered in seven separate cases.
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1. Introduction

The Hosoya (or Wiener) polynomial was introduced by Hosoya in 1988 to count the
number of paths of different lengths in G [7]. The most interesting application of the
Hosoya polynomial is that almost all distance-based graph invariants, which are used
to predict physical, chemical and pharmacological properties of organic molecules, can
be recovered from it.

Hosoya polynomial has been computed for several classes of graphs. In 2002 Diudea
computed the Hosoya polynomial of several classes of toroidal nets and recovered their
Wiener indices [2]. In 2011 Ali found the Hosoya polynomial of concatenated pentag-
onal rings [1]. In 2012 Kishori gave a recursive method for calculating the Hosoya
polynomial of Hanoi graphs, and computed some of their distance-based invariants
[8]. In 2013 Farahani computed the Hosoya polynomial of polycyclic aromatic hydro-
carbons [3]. To learn more about Hosoya polynomial see [4, 5, 6, 9, 10, 11, 12, 13, 14].

This paper is organized as follows: The basic definitions are given in Section 2, main
results are presented in Section 3, and conclusive remarks are given in Section 4.

2. Preliminary Notes

A graph G is a pair (V, E), where V is the set of vertices and E the set of edges. The
edge e between two vertices u and v is denoted by e = (u, v). A path from a vertex v
to a vertex w is a sequence of vertices and edges that starts from v and stops at w. The
number of edges in a path is the length of that path. The distance between two vertices u
and v, denoted by d(u, v), is the length of the shortest path between them. The diameter
of G, denoted by d(G), is the longest distance in G. A graph is said to be connected if
there is a path between any two of its vertices.
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Definition 2.1. A function I which assigns to every connected graph G a unique num-
ber I(G) is called a graph invariant. Instead of the function I it is custom to say the
number I(G) as the invariant.

Definition 2.2. [7] The Hosoya polynomial of a connected graph G is defined as

H(G, x) = ∑
{v,u}∈V

xd(u,v) =
d(G)

∑
k=1

d(G, k)xk.

where d(u, v) is the distance between u and v and d(G, k) is the number of pairs of
vertices of G laying at distance k from each other.

Definition 2.3. Consider the Cartesian product Pm× Pn of paths Pm, m ≥ 4, and Pn, n ≥
2, with vertices u1, u2, . . . , um and v1, v2, . . . , un, respectively. Identify the vertices (u1, v1),
(u1, v2), . . . , (u1, vn) with the vertices (um, v1), (um, v2), . . . , (um, vn), respectively, and
identify the edge

(
(u1, vi), (u1, vi+1)

)
with the edge

(
(um, vi), (um, vi+1)

)
, where 1 ≤

i ≤ n− 1. What we receive is the polygonal Cm,n; we may call it (m-1)-gonal cylinder.
You can see C5,4 along with its grid form in the figure:
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For brevity we shall use the symbol vi,j (vij or simply ij) to represent the vertex (ui, vj)
of Cm,n. In the following you can see the grid form of C5,4 along with simple labels.
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The polygonal cylinder obtained from P5 × P4 is:
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3. Main Results

Here we give the Hosoya polynomial of the polygonal cylinder and give closed for-
mulas of all seven possible cases depending on odd and even m.

Theorem 3.1. Let m > 2n+ 1 be odd, and n ≥ 3. Then the Hosoya polynomial of the polygonal
cylinder Cm,n is

H(Cm,n) =
n−1

∑
k=1

ckxk +

m−1
2 −1−n

∑
k=0

cn+kxn+k + c m−1
2

x
m−1

2

+
n−1

∑
k=1

c m−1
2 +kx

m−1
2 +k,

where ck = (m− 1)(2kn− k2), cn+k = (m− 1)n2, c m−1
2

= (m− 1)(n2 − n
2 ), and c m−1

2 +k =

(m− 1)(n− k)2.

Proof. We prove it using the distance matrix D corresponding to the polygonal cylinder
Cm,n, which is symmetric and have order (m− 1)n× (m− 1)n. Each row of D repre-
sents the distances from a vertex vij to the vertices v1,1, v1,2, . . . , v1,n, v2,1, v2,2, . . . , v2,n,
. . . , vm−1,1, vm−1,2, . . . , vm−1,n, respectively. Since we need distinct paths, we shall con-
sider only its upper triangular part. For this we represent the upper-triangular part
by submatrices. There are m+1

2 distinct submatrices A0, A1, A2, A3, . . . , A m−3
2

, and A m−1
2

.
All these submatrices are symmetric, each having order n× n. Each Ai appears m− 1
times except A m−1

2
, which appears m−1

2 times. A0 appears only on the main diagonal of

D. Ai, 1 ≤ i ≤ m−3
2 , appears m− (i + 1) times in ith secondary diagonal and i times in

(m− (i− 1))th secondary diagonal. A m−1
2

appears only in m−1
2 th secondary diagonal.
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Thus, the general form of the distance matrix D is:

A0 A1 A2 · · · A m−3
2

A m−1
2

A m−3
2

A m−5
2
· · · A2 A1

A0 A1 · · · A m−5
2

A m−3
2

A m−1
2

A m−3
2
· · · A3 A2

A0 · · · A m−7
2

A m−5
2

A m−3
2

A m−1
2
· · · A4 A3

. . .
...

...
...

...
...

...
...

A0 A1 A2 A3 · · · A m−3
2

A m−1
2

A0 A1 A2 · · · A m−5
2

A m−3
2

. . .
. . .

...
...

...
A0 A1 A2 A3

A0 A1 A2
A0 A1

A0


Now we give the entries of the submatrices. Since A0 lies on the main diagonal of D,
only its upper triangular part contributes towards counting the distinct paths. So, A0
is

A0 =



0 1 2 3 · · · n− 2 n− 1
0 1 2 · · · n− 3 n− 2

0 1 · · · n− 4 n− 3
. . . ...

...
...

0 1 2
0 1

0


.

However, although all the entries of Ai, 1 ≤ i ≤ m−1
2 , contribute towards counting the

distinct paths, we give only entries of its upper triangular part as it is symmetric.

Ai =



i i + 1 i + 2 i + 3 · · · i + (n− 2) i + (n− 1)
i i + 1 i + 2 · · · i + (n− 3) i + (n− 2)

i i + 1 · · · i + (n− 4) i + (n− 3)
. . . ...

...
...

i i + 1 i + 2
i i + 1

i


Now we give cis, 1 ≤ i ≤ m−1

2 + n− 1, which is the number of paths of length i.

ck = (no. of k in A0)× (no. of A0s) + (no. of k in A1)× (no. of A1s) + (no. of k
in A2)× (no. of A2s) + · · ·+ (no. of k in Ak−1)× (no. of Ak−1s) + (no. of k in Ak)
× (no. of Aks)
= (n− k)(m− 1) + 2(n− (k− 1))(m− 1) + 2(n− (k− 2))(m− 1) + · · ·+ 2(n− 1)(m−
1) + n(m− 1)
= (m− 1)(n− k + 2(n− (k− 1) + 2(n− (k− 2)) + 2(n− (k− 3)) + · · ·+ 2(n− 1) + n)
= (m − 1)(n − k + 2n − 2(k − 1) + 2n − 2(k − 2) + 2n − 2(k − 3) + · · · + 2n − 2(1) +
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n)(m− 1)(2kn− 2(1 + 2 + 3 + · · ·+ k− 1)− k)
= (m− 1)(2kn− (k− 1)(k)− k) = (m− 1)(2kn− k2)

Now we go for cn+k:

cn+k = (no. of n + k in Ak+1)× (no. of Ak+1)+ (no. of n + k in Ak+2)× (no. of Ak+2)+
(no. of n + k in Ak+3)× (no. of Ak+3) + · · ·+ (no. of n + k in
Ak+n−1)× (no. of Ak+n−1) + (no. of n + k in Ak+n)× (no. of Ak+n)
= 2(m− 1) + 2(2)(m− 1) + 2(3)(m− 1) + · · ·+ 2(n− 1)(m− 1) + n(m− 1)
= (m− 1)[2(1 + 2 + 3 + · · ·+ n− 1) + n] = (m− 1)[(n− 1)n + n] = (m− 1)n2

c m−1
2

= (no. of m−1
2 in A m−1

2 +1−n)× (no. of A m−1
2 +1−n) + (no. of m−1

2 in

A m−1
2 +2−n)× (no. of A m−1

2 +2−n) + (no. of m−1
2 in A m−1

2 +3−n)× (no. of

A m−1
2 +3−n) + (no. of m−1

2 in A m−1
2 +4−n)× (no. of A m−1

2 +4−n) + · · ·+ (no. of
m−1

2 in A m−1
2 −1)× (no. of A m−1

2 −1) + (no. of m−1
2 in A m−1

2
)× (no. of A m−1

2
)

= 2(m− 1) + 2(2)(m− 1) + 2(3)(m− 1) + · · ·+ 2(n− 1)(m− 1) + n(m−1
2 )

= (m− 1)(2(1+ 2+ 3+ . . .+(n− 1))+ n
2 (m− 1) = (m− 1)[ (2n−2)(n)+n

2 ] = (m− 1)(n2−
n
2 )

Finally, c m−1
2 +k, 1 ≤ k ≤ n− 1:

c m−1
2 +k = (no. of m−1

2 + k in A m−1
2 −n+(k+1)) × (no. of A m−1

2 −n+(k+1)) + (no. of m−1
2 +

k in A m−1
2 −n+(k+2))× (no. of A m−1

2 −n+(k+2)) + (no. of m−1
2 + k in A m−1

2 −n+(k+3))×
(no. of A m−1

2 −n+(k+3)) + · · ·+ (no. of m−1
2 + k in A m−1

2 −1)× (no. of A m−1
2 −1) +

(no. of m−1
2 + k in A m−1

2
)× (no. of A m−1

2
)

= (2)(m− 1) + 2(2)(m− 1) + 2(3)(m− 1) + . . . + 2(n− (k + 1)) + 2(n− k)(m−1
2 )

= (m− 1)(2(1 + 2 + 3 + · · ·+ n− (k + 1))) + (n− k)(m− 1)
= (m− 1)[(n− (k + 1))(n− k) + (n− k)] = (m− 1)(n− k)2 �
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Example. The Hossoya polynomial for C11,3 is H(C11,3) = 50x + 80x2 + 90x3 + 90x4 +
75x5 + 40x6 + 10x7. Here the distance matrix is

D =



A0 A1 A2 A3 A4 A5 A4 A3 A2 A1
A0 A1 A2 A3 A4 A5 A4 A3 A2

A0 A1 A2 A3 A4 A5 A4 A3
A0 A1 A2 A3 A4 A5 A4

A0 A1 A2 A3 A4 A5
A0 A1 A2 A3 A4

A0 A1 A2 A3
A0 A1 A2

A0 A1
A0


,

A0 =

 0 1 2
0 1

0

 , and Ai =

 i i + 1 i + 2
i + 1 i i + 1
i + 2 i + 1 i

 , 1 ≤ i ≤ 5.

Theorem 3.2. Let m < 2n− 1 be odd, and n ≥ 3. Then

H(Cm,n) =

m−1
2 −1

∑
k=1

ckxk + c m−1
2

x
m−1

2 +
n−1−(m−1

2 )

∑
k=1

c m−1
2 +kx

m−1
2 +k

+

m−1
2 −1

∑
k=0

cn+kxn+k,

where ck = (m− 1)(2nk− k2), c m−1
2

= −1
4 (m− 1)[m2 − (4n + 2)m + (6n + 1)], c m−1

2 +k =
−1
4 (m− 1)[m2 − 2(2n− 2k + 1)m + (4n− 4k + 1)], and cn+k =

1
4(m− 1)[m− 2k− 1]2.

Proof. For D and its submatrices we refer to Theorem 3.1. Now we give cis, 1 ≤
i ≤ m−1

2 + n − 1. The ck is same as is given in Theorem 3.1; we need to find c m−1
2

,

c m−1
2 +k, 1 ≤ k ≤ n− 1− m−1

2 , and cn+k, 0 ≤ k ≤ m−1
2 − 1.

c m−1
2

= (no. of m−1
2 in A0)× (no. of A0s) + (no. of m−1

2 in A1)× (no. of A1s) +

(no. of m−1
2 in A2)× (no. of A2s) + (no. of m−1

2 in A3)× (no. of A3s) + · · ·
+ (no. of m−1

2 in A m−1
2 −1)× (no. of A m−1

2 −1s) + (no. of m−1
2 in A m−1

2
)× (no. ofA m−1

2
s)

= (n− m−1
2 )(m− 1) + 2(n− m−1

2 + 1)(m− 1) + (n− m−1
2 + 2)(m− 1) +

(n− m−1
2 + 3)(m− 1) + · · ·+ (n− m−1

2 + m−1
2 − 1)(m− 1) + n(m−1

2 )

= (n− m−1
2 ) + 2[(1

2
m−3

2 )(2n− m−1
2 )](m− 1) + n

2 (m− 1)
= [(1

2(3n−m + 1) + (m− 3)(n− m−1
4 ))](m− 1)

= −1
4 (m− 1)[m2 − (4n + 2)m + (6n + 1)].
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Now, c m−1
2 +k, 1 ≤ k ≤ n− 1− m−1

2 :

c m−1
2 +k = (no. of m−1

2 + k in A0)× (no. of A0s)+ (no. of m−1
2 + k in A1)× (no. of A1s)+

(no. of m−1
2 + k in A2) × (no. of A2s) + (no. of m−1

2 + k in A3) × (no. of A3s) + · · · +
(no. of m−1

2 + k in A m−1
2 −1)× (no. of A m−1

2 −1s)+ (no. ofm−1
2 + k in A m−1

2
)× (no. ofA m−1

2
s)

= (n− m−1
2 − k)(m− 1) + 2(n− m−1

2 + 1− k)(m− 1) + (n− m−1
2 + 2− k)(m− 1) +

(n− m−1
2 + 3− k)(m− 1) + · · ·+ (n− m−1

2 + m−1
2 − k− 1)(m− 1) + 2(n− k)(m−1

2 )

= −1
4 (m− 1)[m2 − 2(2n− 2k + 1)m + (4n− 4k + 1)].

Finally, cn+k, 0 ≤ k ≤ m−1
2 − 1:

cn+k = (no. of n + k in Ak+1)× (no. of Ak+1)+ (no. of n + k in Ak+2)× (no. of Ak+2)+
(no. of n + k in Ak+3)× (no. of Ak+3) + · · ·+ (no. of n + k in
A m−1

2 −1)× (no. of A m−1
2 −1) + (no. of n + k in A m−1

2
)× (no. of A m−1

2
)

= 2(m− 1) + 2(2)(m− 1) + 2(3)(m− 1) + · · ·+ 2(m−1
2 − k− 1)(m− 1) +

2(m−1
2 − k)(m−1

2 ) = (m−1
2 − k)2. �

Theorem 3.3. Let m = 2n− 1 and n ≥ 3. Then

H(Cm,n) =

m−1
2 −1

∑
k=1

ckxk + c m−1
2

x
m−1

2 +
n−2

∑
k=0

c m−1
2 +k+1x

m−1
2 +k+1,

where ck = (m − 1)(2nk − k2), c m−1
2

= −1
4 (m − 1)[m2 − (4n + 2)m + (6n + 1)], and

c m−1
2 +k+1 = 1

4(m− 1)[m− 2k− 1]2.

Proof. For ck and c m−1
2

see the previous proofs. Since m = 2n − 1, c m−1
2 +k+1 becomes

cn+k, which is also proved in Theorem 3.2. �

Theorem 3.4. Let m = 2n + 1 and n ≥ 3. Then the Hosoya polynomial of the polygonal
cylinder Cm,n is

H(Cm,n) =

m−1
2 −1

∑
k=1

ckxk + c m−1
2

x
m−1

2 +
n−2

∑
k=0

c m−1
2 +k+1x

m−1
2 +k+1,

where ck = (m− 1)(2nk− k2), c m−1
2

= (m− 1)[n2 − n
2 ], and

c m−1
2 +k+1 = 1

4(m− 1)[m− 2k− 1]2.

Proof. For ck and c m−1
2

see Theorem 3.1. Here c m−1
2 +k becomes cn+k, which is also proved

in Theorem 3.2. �
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Theorem 3.5. Let m > 2n be even, and n ≥ 3. Then the Hosoya polynomial of the polygonal
cylinder Cm,n is

H(Cm,n) =
n−1

∑
k=1

ckxk +

m
2 −n−1

∑
k=0

cn+kxn+k +
n−2

∑
k=0

c m
2 +kx

m
2 +k,

where ck = (m− 1)(2kn− k2), cn+k = (m− 1)n2, and c m
2 +k = (m− 1)[(n− k)2− (n− k)].

Proof. The distance matrix D is



A0 A1 A2 · · · A m
2 −2 A m

2 −1 A m
2 −1 A m

2 −2 A m
2 −3 · · · A2 A1

A0 A1 · · · A m
2 −3 A m

2 −2 A m
2 −1 A m

2 −1 A m
2 −2 · · · A3 A2

A0 · · · A m
2 −4 A m

2 −3 A m
2 −2 A m

2 −1 A m
2 −1 · · · A4 A3

. . . · · ·
...

...
... · · ·

...
...

...
A0 A1 A2 A3 A4 · · · A m

2 −1 A m
2 −1

A0 A1 A2 A3 · · · A m
2 −2 A m

2 −1

A0 A1 A2 · · · A m
2 −3 A m

2 −2

. . . · · ·
...

...
...

A0 A1 A2 A3
A0 A1 A2

A0 A1
A0



Each submatrix A0, A1, A2, A3, . . . , A m
2 −2, and A m

2 −1 appears m− 1 times. A0 appears
only on the main diagonal of D. Ai, 1 ≤ i ≤ m

2 − 1, appears m− (i + 1) times in ith sec-
ondary diagonal and i times in [m− (i− 1)]th secondary diagonal. These submatrices
are same as are in Theorem 3.1. The proofs of ck and ck+n are given in Theorem 3.1. We
need only c m

2 +k.

c m
2 +k = (no. of m

2 + k in A m
2 −n+(k+1))× (no. of A m

2 −n+(k+1))+ (no. of m
2 + k in A m

2 −n+(k+2))×
(no. of A m

2 −n+(k+2)) + (no. of m
2 + k in A m

2 −n+(k+3))× (no. of A m
2 −n+(k+3)) + · · ·+

(no. of m
2 + k in A m

2 −2)× (no. of A m
2 −2) + (no. ofm

2 + k in A m
2 −1)× (no. of A m

2 −1)c m
2 +k

= 2(m− 1) + 2(2)(m− 1) + 2(3)(m− 1) + · · ·+ 2(n− (k + 2))(m− 1) +
2(n− (k + 1))(m− 1)
= (m− 1)[2(1 + 2 + 3 + · · ·+ (n− (k + 2)) + (n− (k + 1))]
= (m− 1)[(n− (k + 1))(n− k)] = (m− 1)[(n− k)2 − (n− k)]. �
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Example. The Hossoya polynomial for C10,3 is H(C10,3) = 45x + 72x2 + 81x3 + 54x4 +
18x6. Its distance matrix is

D =



A0 A1 A2 A3 A4 A4 A3 A2 A1
A0 A1 A2 A3 A4 A4 A3 A2

A0 A1 A2 A3 A4 A4 A3
A0 A1 A2 A3 A4 A4

A0 A1 A2 A3 A4
A0 A1 A2 A3

A0 A1 A2
A0 A1

A0


,

where A0 =

 0 1 2
0 1

0

 and Ai =

 i i + 1 i + 2
i + 1 i i + 1
i + 2 i + 1 i

, 1 ≤ i ≤ 4.

Theorem 3.6. Let m < 2n be even, and n ≥ 3. Then the Hosoya polynomial of the polygonal
cylinder Cm,n is

H(Cm,n) =

m
2 −1

∑
k=1

ckxk +
n−m

2 −1

∑
k=0

c m
2 +kx

m
2 +k +

m
2 −2

∑
k=0

cn+kxn+k,

where ck = (m− 1)(2kn− k2), c m
2 +k =

−1
4 (m− 1)[m2− 4(n− k)m− (4k− 4n)], and cn+k =

1
4(m− 1)[m2 − 2(2k + 1)m + 4k(k + 1)].

Proof. Everything is same as is in Theorem 3.5. We need only c m
2 +k and cn+k.

c m
2 +k = (no. of m

2 + k in A0)× (no. of A0s) + (no. of m
2 + k in A1)× (no. of A1s) +

(no. of m
2 + k in A2)× (no. of A2s) + · · ·+ (no. of m

2 + k in A m
2 −1)× (no. of A m

2 −1s)
= (n− k− m

2 )(m− 1) + 2(n− m
2 − (k− 1))(m− 1) + 2(n− m

2 − (k− 2))(m− 1) + · · ·+
2(n− m

2 − (k− m
2 + 1)(m− 1) = (m− 1)[n− k− m

2 + (m− 2)(n− m
4 − k)]

= −1
4 (m− 1)[m2 − 4(n− k)m− (4k− 4n)]

cn+k = (no. of n + k in Ak+1)× (no. of Ak+1)+ (no. of n + k in Ak+2)× (no. of Ak+2)+
(no. of n + k in Ak+3)× (no. of Ak+3) + · · ·+
(no. of n + k inA m

2 −1)× (no. of A m
2 −1) = 2(m− 1) + 2(2)(m− 1) + 2(3)(m− 1) + · · ·+

2(m
2 − k− 1)(m−1

2 ) = 1
4(m− 1)[m2 − 2(2k + 1)m + 4k(k + 1)].

�
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Theorem 3.7. Let m = 2n and n ≥ 3. Then

H(Cm,n) =

m
2 −1

∑
k=1

ckxk +
n−2

∑
k=0

c m
2 +kx

m
2 +k,

where ck = (m− 1)(2kn− k2), and c m
2 +k =

1
4(m− 1)[m2 − 2(2k + 1)m + 4k(k + 1)].

Proof. ck is given in Theorem 3.1. Here c m
2 +k becomes cn+k, which is proved in Theo-

rem 3.6. �

Remark 3.8. It is observed that if the Hosoya polynomial of the polygonal cylinder has
an inflection point then it does not has any extrema, and if it has an extrema then it
does not has any inflection point; you may see the situation in the following figures.

H(C11,3) H(C13,3) H(C21,6)

H(C23,6) H(C13,8) H(C9,7)

H(C9,5) H(C7,4) H(C11,5)

H(C7,4) H(C10,3) H(C12,3)

H(C10,4) H(C12,4) H(C8,5)
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H(C8,6) H(C10,5) H(C12,6)

4. Conclusions

In this paper we introduced a polygonal cylinder Cm,n, using the Cartesian product of
paths Pm, Pn and using topological identification of vertices and edges of two opposite
sides of Pm × Pn. The parameter m made the base while the parameter n made the
length of Cm,n. Secondly, we gave general closed form of the Hosoya polynomial of
Cm,n, which, depending on odd and even m, is covered in seven separate cases. We
also gave two examples, one for odd m and one for even m. Moreover, we figured out
that if the polynomial has an inflection point then it does not has any extrema, and if a
polynomial has an extrema then it does not has any inflection point.
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