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Abstract. In this paper, we study a class of sequences of polynomials linked to the se-
quence of Bell polynomials. Some sequences of this class have applications on the theory
of hyperbolic differential equations and other sequences generalize Laguerre polynomi-
als and associated Lah polynomials. We discuss, for these polynomials, their explicit
expressions, relations to the successive derivatives of a given function, real zeros and
recurrence relations. Some known results are significantly simplified.
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1. Introduction

Many polynomials having applications on the hyperbolic partial differential equa-
tions

Auxx + 2Buxy + Cuyy + Dux + Euy + F = 0 with AD > BC,

for which the following two sequences of polynomials (Un (x)) and (Vn (x)) defined
by

∑
n≥0

Un (x)
tn

n!
= (1− t)−1/2 exp

(
x
(
(1− t)−1/2 − 1

))
,

∑
n≥0

Vn (x)
tn

n!
= (1− t)−3/2 exp

(
x
(
(1− t)−1/2 − 1

))
are considered, see [10, pp. 257–258] and [7, pp. 391–398]. They can be written as

Un (x) = xe−x
(

d
d (x2)

)n (
x2n−1ex

)
,

Vn (x) =
e−x

x

(
d

d (x2)

)n (
x2n+1ex

)
.

Recently, some studies of the sequence of polynomials (Un (x)) are given in [15, 25, 26].
Motivated by these works, to give more properties of these polynomials, we prefer to
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consider their generalized sequence of polynomials
(

L(α,β)
n (x)

)
defined by

∑
n≥0

L(α,β)
n (x)

tn

n!
= (1− t)α exp

(
x
(
(1− t)β − 1

))
, α, β ∈ R, β 6= 0.

The first few values of the sequence
(

L(α,β)
n

(
− x

β

)
; n ≥ 0

)
are to be

L(α,β)
0

(
− x

β

)
= 1,

L(α,β)
1

(
− x

β

)
= x− α,

L(α,β)
2

(
− x

β

)
= x2 − (2α + β− 1) x + (α)2 ,

L(α,β)
3

(
− x

β

)
= x3 − 3 (α + β− 1) x2 +

(
3α2 + (3α + β− 1) (β− 2)

)
x− (α)3 ,

where (α)n := α (α− 1) · · · (α− n + 1) if n ≥ 1 and (α)0 := 1.
We use also the notation 〈α〉n := α (α + 1) · · · (α + n− 1) if n ≥ 1 and 〈α〉0 := 1, and
we set in the rest of the paper by convention 00 = 1.
The paper is organized as follows. In the next section we give different expressions for
L(α,β)

n (x) . In the third section we give special expressions for L(α,β)
n (x) and we show

that it has only real zeros under certain conditions on α and β. In the fourth section,
we give some recurrence relations, and, in the last section apply the obtained results to
some particular polynomials.

2. Explicit expressions for the polynomials L(α,β)
n

In this section, we give some explicit expressions for L(α,β)
n (x) . Two expressions of

L(α,β)
n (x) related to Dobinski’s formula and generalized Stirling numbers are given by

the following proposition.

Proposition 1. There hold

L(α,β)
n (x) = e−x ∑

k≥0
〈−α− βk〉n

xk

k!
,

L(α,β)
n (x) =

n

∑
k=0

Sα,β (n, k) xk,

where

Sα,β (n, k) =
1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
〈−α− βj〉n .

To prove Proposition 1, the following theorem may be necessary.
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Theorem 2. [30, th. 7.50] Suppose that cm,n ∈ C for each (m, n) ∈N×N and that φ in any
one-to-one mapping of N onto N×N. If any of the three sums

(i)
∞

∑
m=1

(
∞

∑
n=1
|cm,n|

)
,

∞

∑
n=1

(
∞

∑
m=1
|cm,n|

)
,

∞

∑
k=1

∣∣∣cφ(k)

∣∣∣
is finite, then all of the series

(ii)
∞

∑
n=1

cm,n (m = 1, 2, . . .) ,

(iii)
∞

∑
m=1

cm,n (n = 1, 2, . . .) ,

(iv)
∞

∑
m=1

(
∞

∑
n=1

cm,n

)
,

∞

∑
n=1

(
∞

∑
m=1

cm,n

)
,

∞

∑
k=1

cφ(k)

are absolutely convergent and the three series in (iv) all have the same sum, where C and N

are, respectively, the sets of complex and natural numbers.

Proof of Proposition 1. By definition we have

∑
n≥0

L(α,β)
n (x)

tn

n!
= e−x (1− t)α exp

(
x (1− t)β

)
= e−x ∑

m≥0
xm (1− t)α+βm

m!

= e−x ∑
m≥0

(
∑
n≥0
〈−α− βm〉n

xm

m!
tn

n!

)
, |t| < 1,

but for |t| < 1 if we set cm,n = e−x 〈−α− βm〉n xm

m!
tn

n! we get

|cm,n| = e−x |〈−α− βm〉n|
|x|m

m!
|t|n

n!
≤ e−x 〈|α|+ |β|m〉n

|x|m

m!
|t|n

n!
:= Cm,n

and

∑
m≥0

(
∑
n≥0

Cm,n

)
= e−x ∑

m≥0

|x|m

m! ∑
n≥0
〈|α|+ |β|m〉n

|t|n

n!

= e−x ∑
m≥0

|x|m

m!
(1− |t|)|α|+|β|m

= e−x (1− |t|)|α| exp
(
|x| (1− |t|)|β|

)
Online Journal of Analytic Combinatorics, Issue 15 (2020), #02
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which is finite. Then, by Theorem 2, it follows

∑
n≥0

L(α,β)
n (x)

tn

n!
= e−x ∑

m≥0

(
∑
n≥0
〈−α− βm〉n

xm

m!
tn

n!

)

= ∑
n≥0

(
e−x ∑

m≥0
〈−α− βm〉n

xm

m!

)
tn

n!
,

from which the first identity follows.
The second identity follows from the first by expansion e−x in power series.

Proposition 3. There holds

xn =
n

∑
k=0

S̃α,β (n, k) L(α,β)
k (x) with S̃α,β (n, k) = (−1)n−k S− α

β , 1
β
(n, k) .

Proof. Upon using the explicit expression of Sα,β (n, k) given in Proposition 1, we get
for |t| < 1 :

∑
n≥0

Sα,β (n, k)
tn

n!
=

1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
∑
n≥0
〈−α− βj〉n

tn

n!

=
1
k!

k

∑
j=0

(−1)k−j
(

k
j

)
(1− t)α+βj

=
1
k!

(1− t)α
(
(1− t)β − 1

)k
,

Then, if we set Hk (t) = (1− t)−α/β
(
(1− t)1/β − 1

)k
we get

n

∑
k=0

S̃α,β (n, k) L(α,β)
k (x) =

n

∑
k=0

(−1)n−k S− α
β , 1

β
(n, k) L(α,β)

k (x)

=
n

∑
k=0

(−1)n−k L(α,β)
k (x)

(
d
dt

)n

t=0

(
Hk (t)

k!

)

= (−1)n
(

d
dt

)n

t=0

(
n

∑
k=0

L(α,β)
k (x)

Hk (t)
k!

)

= (−1)n
(

d
dt

)n

t=0

(
∑
k≥0

L(α,β)
k (x)

Hk (t)
k!

)

− (−1)n
(

d
dt

)n

t=0

(
∑

k≥n+1
L(α,β)

k (x)
Hk (t)

k!

)
.
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So, by definition of the sequence
(

L(α,β)
k (x) ; k ≥ 0

)
we have

(−1)n
(

d
dt

)n

t=0

(
∑
k≥0

L(α,β)
k (x)

Hk (t)
k!

)
= (−1)n

(
d
dt

)n

t=0
(exp (−xt)) = xn,

and since for k ∈ {0, 1, . . . , n} the coefficient of tk in the power series Hk (t) is zero, it
follows that

(−1)n
(

d
dt

)n

t=0

(
∑

k≥n+1
L(α,β)

k (x)
Hk (t)

k!

)
= 0.

Hence
n
∑

k=0
S̃α,β (n, k) L(α,β)

k (x) = xn.

Corollary 4. There holds

〈−α− βx〉n =
n

∑
j=0

Sα,β (n, j) (x)j .

Proof. Let 〈−α− βx〉n =
n
∑

j=0
δ (n, j) (x)j . Then, from Proposition 1 we get

L(α,β)
n (x) = e−x ∑

k≥0
〈−α− βk〉n

xk

k!
=

n

∑
j=0

δ (n, j)

(
e−x ∑

k≥j
(k)j

xk

k!

)
=

n

∑
j=0

δ (n, j) xj,

which gives δ (n, j) = Sα,β (n, j) .

If Bn denote the n-th Bell polynomial, then when we replace t by 1− et in the gener-
ating function of the sequence

(
L(α,β)

n (x)
)

, then L(α,β)
n (x) can be written in the basis

{1,B1 (x) , . . . ,Bn (x)} as follows:

Proposition 5. There holds
n

∑
k=0

(−1)k S (n, k) L(α,β)
k (x) =

n

∑
k=0

(
n
k

)
αn−kβkBk (x) ,

or equivalently

L(α,β)
n (x) =

n

∑
j=0

βj

(
n

∑
k=j

(−1)k |s (n, k)| αk−j

)
Bj (x) ,

where s (n, k) and S (n, k) are, respectively, the Stirling numbers of the first and second kind,
see for instance [6].

Let B(r)
n+r,k+r ((ai, i ≥ 1) ; (bi, i ≥ 1)) are the partial r-Bell polynomials [5, 21, 28] defined

by

∑
n≥k

B(r)
n+r,k+r (al; bl)

tn

n!
=

1
k!

(
∑
j≥1

aj
tj

j!

)k(
∑
j≥0

bj+1
tj

j!

)r

Online Journal of Analytic Combinatorics, Issue 15 (2020), #02
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and Bn,k ((ai, i ≥ 1)) = B(0)
n,k ((ai, i ≥ 1) ; (bi, i ≥ 1)) are the partial Bell polynomials [1,

6, 18, 19]. An expression of L(α,β)
n (x) in terms of the partial r-Bell polynomials is as

follows.

Proposition 6. For any non-negative integer r, there hold

Srα,β (n, k) = B(r)
n+r,k+r

(
〈−β〉j ; 〈−α〉j−1

)
,

which imply

L(rα,β)
n (x) =

n

∑
k=0

B(r)
n+r,k+r

(
〈−β〉j ; 〈−α〉j−1

)
xk.

Proof. From the proof of Proposition 3 we have

∑
n≥0

Sα,β (n, k)
tn

n!
=

1
k!

(1− t)α
(
(1− t)β − 1

)k
.

Then, we get

∑
n≥0

Srα,β (n, k)
tn

n!
=

1
k!

(
(1− t)β − 1

)k
(1− t)rα

=
1
k!

(
∑
n≥1
〈−β〉n

tn

n!

)k(
∑
n≥0
〈−α〉n

tn

n!

)r

= ∑
n≥k

B(r)
n+r,k+r

(
〈−β〉j ; 〈−α〉j−1

) tn

n!
,

and this expansion gives Srα,β (n, k) = B(r)
n+r,k+r

(
〈−β〉j ; 〈−α〉j−1

)
.

3. Some properties of the polynomials L(α,β)
n

In this section, we show the link of the sequence of polynomials
(

L(α,β)
n (x)

)
to the

successive derivatives of a given function and we give sufficient conditions on α and β

for which the polynomial L(α,β)
n has only real zeros.

Lemma 7. There holds

L(α,β)
n+1 (x) = (n− α− βx) L(α,β)

n (x)− βx
d

dx
L(α,β)

n (x) .

Proof. One can verify that the function

Fα,β (t, x) = (1− t)α exp
(

x
(
(1− t)β − 1

))
is a solution of the partial differential equation

(1− t)
d
dt

Y + βx
d

dx
Y + (α + βx)Y = 0
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from which it results the desired identity.

Theorem 8. For x > 0 and n ≥ 0 we have

L(α,β)
n

(
xβ
)

= (−1)n xn−αe−xβ
(

d
dx

)n (
xαexβ

)
,

L(α,β)
n

(
x−β

)
= xα+1e−x−β

(
d

dx

)n (
xn−1−αex−β

)
.

Proof. For the first identity, Lemma 7 gives

L(α,β)
n (x) = (n− 1− α− βx) L(α,β)

n−1 (x)− βx
d

dx
L(α,β)

n−1 (x) ,

and if we set f (α,β)
n (x) := (−1)n x

α−n
β exL(α,β)

n (x) , the last identity can also be written as

f (α,β)
n (x) = βx1− 1

β
d

dx
f (α,β)
n−1 (x) =

d
d
(
x1/β

) f (α,β)
n−1 (x)

which implies f (α,β)
n (x) =

(
d

d(x1/β)

)n
f (α,β)
0 (x) =

(
d

d(x1/β)

)n (
x

α
β ex
)

. So, we get

L(α,β)
n (x) = (−1)n x

n−α
β e−x

(
d

d
(
x1/β

))n (
x

α
β ex
)

or equivalently L(α,β)
n

(
yβ
)
= (−1)n yn−αe−yβ

(
d

dy

)n (
yαeyβ

)
.

For the second identity, we proceed as follows(
d

d
(
x−1/β

))n (
x

α+1−n
β ex

)
=

(
d

dy

)n

y=x−1/β

(
yn−α−1ey−β

)
=

(
d

dy

)n

y=x−1/β
∑
k≥0

1
k!

yn−1−α−kβ

= ∑
k≥0

(n− 1− α− kβ)n
y−1−α−kβ

k!

∣∣∣∣∣
y=x−1/β

= x
α+1

β ∑
k≥0
〈−α− kβ〉n

xk

k!

= x
α+1

β exL(α,β)
n (x) ,

i.e. L(α,β)
n (x) = x−

α+1
β e−x

(
d

d(x−1/β)

)n (
x

α+1−n
β ex

)
which is equivalent to the desired

identity.

Corollary 9. There holds

L(α,β)
n (x) = (−1)n L(n−1−α,−β)

n (x)

Online Journal of Analytic Combinatorics, Issue 15 (2020), #02
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and
Sα,β (n, k) = (−1)n Sn−1−α,−β (n, k) .

Proof. Theorem 8 remains true for any complex number x. Then, use its second identity
to obtain

L(n−1−α,−β)
n

(
xβ
)
= xn−αe−xβ

(
d

dx

)n (
xαexβ

)
= (−1)n L(α,β)

n

(
xβ
)

,

which this gives the first identity.
The second identity follows from the first one and Proposition 1.

Theorem 8 proves that Bn
(
xβ
)

can also be written in a similar form as follows.

Proposition 10. For x > 0 and n ≥ 0 we have

Bn

(
λ + xβ

)
= x−αe−xβ

(
x

d
dx
− α

β
+ λ

)n (
xαexβ

)
, β 6= 0,

or equivalently

Bn

(
λ + eβy

)
= e−eβy−αy

(
d

dy
− α

β
+ λ

)n (
eeβy+αy

)
, β 6= 0.

Proof. From Proposition 5 we get

1
αn

n

∑
k=0

(−1)k S (n, k) L(α,β)
k (x) =

n

∑
k=0

(
n
k

)(
β

α

)k
Bk (x) ,

which implies by using Theorem 8(
β

α

)n
Bn

(
xβ
)

=
n

∑
k=0

(−1)n−k

αk

(
n
k

) k

∑
j=0

S (k, j) (−1)j L(α,β)
j

(
xβ
)

=
n

∑
k=0

(−1)n−k

αk

(
n
k

) k

∑
j=0

S (k, j) xj−αe−xβ
(

d
dx

)j (
xαexβ

)
= (−1)n x−αe−xβ

n

∑
k=0

(
n
k

)(
−1

α

)k k

∑
j=0

S (k, j) xj
(

d
dx

)j (
xαexβ

)
.

On using the identity
k
∑

j=0
S (k, j) xj

(
d

dx

)j
=
(

x d
dx

)k
[11], it follows

Bn

(
xβ
)

=

(
−α

β

)n
x−αe−xβ

n

∑
k=0

(
n
k

)(
−x

α

d
dx

)k (
xαexβ

)
=

(
−α

β

)n
x−αe−xβ

(
1− x

α

d
dx

)n (
xαexβ

)
= x−αe−xβ

(
x

d
dx
− α

β

)n (
xαexβ

)
,
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Then, since the sequence of polynomials (Bn (x) ; n ≥ 0) is of binomial type, we can
write

Bn

(
λ + xβ

)
=

n

∑
j=0

(
n
j

)
Bn−j (λ)Bj

(
xβ
)

= x−αe−xβ
n

∑
j=0

(
n
j

)
λn−j

(
x

d
dx
− α

β

)j (
xαexβ

)
= x−αe−xβ

(
x

d
dx
− α

β
+ λ

)n (
xαexβ

)
,

which remains true for α = 0.

To study the real zeros of L(α,β)
n , we use the following known theorem. Indeed, let

P1 and P2 be two polynomials having only real zeros and let xn ≤ · · · ≤ x1 and
ym ≤ · · · ≤ y1 be the zeros of P1 and P2, respectively. Following [31], we say that
P2 interlaces P1 if m = n− 1 and

xn ≤ yn−1 ≤ xn−1 ≤ · · · ≤ y1 ≤ x1

and that P2 alternates left of P1 if m = n and

yn ≤ xn ≤ yn−1 ≤ xn−1 ≤ · · · ≤ y1 ≤ x1.

Theorem 11. [32, Th. 1] Let a1, a2, b1, b2 be real numbers, let P1, P2 be two polynomials whose
leading coefficients have the same sign and let P (x) = (a1x + b1) P1 (x) + (a2x + b2) P2 (x) .
Suppose that P1, P2 have only real zeros and P2 interlaces P1 or P2 alternates left of P1. Then, if
a1b2 ≤ b1a2, P(x) has only real zeros.

Theorem 12. Let

A =
{
(α, β) ∈ R2 : (β− 1)2 + 4αβ ≥ 0, β < 0, α ≤ 2

}
,

Ã =
{
(α, β) ∈ R2 : β > 0, α ≥ 1

}
.

Then, for (α, β) ∈ A, the polynomial L(α,β)
n has only real zeros, n ≥ 1, and, for (α, β) ∈ Ã, the

polynomials L(α,β)
1 , . . . , L(α,β)

dαe has only real zeros, where dαe is the smallest integer ≥ α.

Proof. We proceed by induction on n ≥ 1. For n = 1, the polynomial L(α)
1 (x) = −βx− α

has a real zero, and for n = 2, the polynomial

L(α)
2 (x) = β2x2 + β (2α + β− 1) x + α (α− 1)

has only real zeros when (β− 1)2 + 4αβ ≥ 0 and β < 0.
Assume that L(α,β)

n (x) has n (≥ 2) real zeros different from zero, since the heading
coefficient of L(α,β)

n (x) is Sα,β (n, n) = (−β)n and the heading coefficient of d
dx L(α,β)

n (x)

is nSα,β (n, n) = n (−β)n , then they are of the same sign. Also, since d
dx L(α,β)

n (x)

Online Journal of Analytic Combinatorics, Issue 15 (2020), #02
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interlaces L(α,β)
n (x) it follows from Theorem 11 that if −β (n− α) ≥ 0, L(α,β)

n+1 has
only real zeros. The condition −β (n− α) ≥ 0 is satisfied when (α, β) ∈ A because
−β (n− α) ≥ −β (2− α) ≥ 0. It is also satisfied when n ∈ [1, dαe − 1] and (α, β) ∈ Ã
because −β (n− α) ≥ −β (dαe − 1− α) ≥ 0.

Corollary 13. For α ≤ 0 and β < 0 the sequence
(
Sα,β (n, k) ; 0 ≤ k ≤ n

)
is strictly log-

concave, more precisely

(
Sα,β (n, k)

)2 ≥
(

1 +
1
k

)(
1 +

1
n− k

)
Sα,β (n, k + 1) Sα,β (n, k− 1) , 1 ≤ k ≤ n− 1.

Proof. For α ≤ 0 and β < 0 the polynomial L(α,β)
n has only real zeros and its coefficients

Sα,β (n, k) are non-negative, so Newton’s inequality [13, pp. 52] completes the proof.

4. Recurrence relations

In [15, Sec. 2] (see also [25]), the authors give a differential equation having as
solution the function

(1− t)−1/2 exp
(

x
(
(1− t)−1/2 − 1

))

from which they conclude a generalized recurrence relation for the sequence (Un (x)) .
The results of this section simplify and generalize these results.

Lemma 14. Let m be a positive integer. The function

Fα,β (t, x) = (1− t)α exp
(

x
(
(1− t)β − 1

))

satisfies

(1− t)m
(

d
dt

)m
Fα,β (t, x) = Fα,β (t, x) L(α,β)

m

(
x (1− t)β

)
.
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Proof. From the definition of Fα,β (t, x) and Corollary 4 we obtain(
d
dt

)m
Fα,β (t, x) =

(
d
dt

)m (
(1− t)α exp

(
x
(
(1− t)β − 1

)))
= e−x ∑

k≥0

xk

k!

(
d
dt

)m

(1− t)α+kβ

= e−x ∑
k≥0

xk

k!
〈−α− kβ〉m (1− t)α+kβ−m

= e−x (1− t)α−m
m

∑
j=0

Sα,β (m, j) ∑
k≥0

(k)j
xk (1− t)kβ

k!

= e−x (1− t)α−m
m

∑
j=0

Sα,β (m, j) xj (1− t)jβ ∑
k≥0

xk (1− t)kβ

k!

= (1− t)α−m exp
(

x
(
(1− t)β − 1

)) n

∑
j=0

Sα,β (m, j) xj (1− t)jβ

= Fα,β (t, x) (1− t)−m
m

∑
j=0

Sα,β (m, j) xj (1− t)jβ

= Fα,β (t, x) (1− t)−m L(α,β)
m

(
x (1− t)β

)
.

The next corollary gives an expression of L(α,β)
n+m (x) in terms of the family

(
xkL(α,β)

j (x)
)

.
The obtained expression is similar to the expression of the Bell number Bn+m :=
Bn+m (1) given in [29], Bell polynomial Bn+m (x) given in [3, 12] and several gener-
alizations given later, see [14, 16, 17, 20, 33].

Corollary 15. For n, m = 0, 1, 2, . . . , we have

L(α,β)
n+m (x) =

n

∑
j=0

m

∑
k=0

(
n
j

)
〈m− βk〉n−j Sα,β (m, k) xkL(α,β)

j (x) .

In particular, for m = 1, we obtain

L(α,β)
n+1 (x) = −

n

∑
j=0

(
n
j

)(
α (n− j)! + βx 〈1− β〉n−j

)
L(α,β)

j (x) .

Proof. On using Lemma 14, Proposition 1 and the expansion

(1− t)−x = ∑
j≥0
〈x〉j

tj

j!
, |t| < 1,
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we obtain

∑
n≥0

L(α,β)
n+m (x)

tn

n!
=

(
d
dt

)m
Fα,β (t, x)

= Fα,β (t, x) (1− t)−m L(α,β)
m

(
x (1− t)β

)
=

(
∑
i≥0

L(α,β)
i (x)

ti

i!

)(
m

∑
k=0

Sα,β (m, k) xk (1− t)−m+βk

)

=
m

∑
k=0

Sα,β (m, k) xk

(
∑
i≥0

L(α,β)
i (x)

ti

i!

)(
∑
j≥0
〈m− βk〉j

tj

j!

)

=
m

∑
k=0

Sα,β (m, k) xk ∑
n≥0

(
n

∑
j=0

(
n
j

)
〈m− βk〉n−j L(α,β)

j (x)

)
tn

n!

= ∑
n≥0

(
n

∑
j=0

m

∑
k=0

(
n
j

)
〈m− βk〉n−j Sα,β (m, k) xkL(α,β)

j (x)

)
tn

n!

which follows gives the desired identity.

Remark 16. For n = 1 in Corollary 15 we get

L(α,β)
m+1 (x) =

m+1

∑
j=0

(
(m− α− βj) Sα,β (m, j)− βSα,β (m, j− 1)

)
xj.

So, since from Proposition 1 we have L(α,β)
m+1 (x) =

m+1
∑

j=0
Sα,β (m + 1, j) xj, it results

Sα,β (m + 1, j) = (m− α− βj) Sα,β (m, j)− βSα,β (m, j− 1) ,

with Sα,β (m + 1, j) = 0 if j < 0 or j > m + 1.

Proposition 17. There holds

L(α,β)
n (x) =

n

∑
k=0

(−1)k S
α− α′

β′ β, β

β′
(n, k) L(α′,β′)

k (x) .

In particular, for (α′, β′) = (α/λ, β/λ) , (1, 1) or (0, 1) , we get

L(α,β)
n (x) =

n

∑
k=0

(−1)k Bn,k

(
〈−λ〉j

)
L(α/λ,β/λ)

k (x) , λ 6= 0,

L(α,β)
n (x) =

n

∑
k=0

Sα−β,β (n, k) (x + k) xk−1, n ≥ 1,

L(α,β)
n (x) =

n

∑
k=0

Sα,β (n, k) xk.
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Proof. From Proposition 3 we have xk =
k
∑

j=0
S̃α′,β′ (k, j) L(α′,β′)

j (x) .

So, use the identity L(α,β)
n (x) =

n
∑

k=0
Sα,β (n, k) xk of Proposition 1 to obtain

L(α,β)
n (x) =

n

∑
k=0

Sα,β (n, k)

(
k

∑
j=0

S̃α′,β′ (k, j) L(α′,β′)
j (x)

)

=
n

∑
j=0

(
n

∑
k=j

Sα,β (n, k) S̃α′,β′ (k, j)

)
L(α′,β′)

j (x) .

Now, since from the proof of Proposition 3, we have

∑
n≥k

Sα,β (n, k)
tn

n!
=

(−1)k

k!

(
1− (1− t)β

)k
(1− t)α ,

it follows that M (n, j) :=
n
∑

k=j
Sα,β (n, k) S̃α′,β′ (k, j) = (−1)j S

α− α′
β′ β, β

β′
(n, j) .

Indeed, since

Sα,β (n, k) =
(−1)k

k!

(
d

du

)n

u=0

((
1− (1− u)β

)k
(1− u)α

)
,

S̃α′,β′ (k, j) =
(−1)k

j!

(
d

dv

)k

v=0

((
1− (1− v)

1
β′
)j

(1− v)
− α′

β′

)
,

we get
Sα,β (n, k) = 0 if k ≥ n + 1, S̃α′,β′ (k, j) = 0 if j ≥ k + 1

and

M (n, j) = ∑
k≥0

Sα,β (n, k) S̃α′,β′ (k, j)

=
1
j!

(
d

du

)n

u=0

∑
k≥0

(
d

dv

)k

v=0
H (v)

(
1− (1− u)β

)k
(1− u)α

k!

 ,

where H (v) =
(

1− (1− v)
1
β′
)j

(1− v)
− α′

β′ . But by the Maclaurin formula we have

∑
k≥0

(
d

dv

)k

v=0
H (v)

(
1− (1− u)β

)k

k!
= H

(
1− (1− u)β

)
=

(
1− (1− u)

β

β′
)j

(1− u)
− α′

β′ β ,
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so, we get

M (n, j) =
1
j!

(
d

du

)n

u=0

[(
1− (1− u)

β

β′
)j

(1− u)
α− α′

β′ β

]
= (−1)j S

α− α′
β′ β, β

β′
(n, j) .

As a consequence of Proposition 17, by combining it with Propositions 1, it results:

Corollary 18. For any real numbers α, α′, β, β′ such that β′ 6= 0, there hold

〈−α− βx〉n =
n

∑
j=0

(−1)j S
α− α′

β′ β, β

β′
(n, j)

〈
−α′ − β′x

〉
j ,

Sα,β (n, k) =
n

∑
j=k

(−1)j S
α− α′

β′ β, β

β′
(n, j) Sα′,β′ (j, k) .

5. Application to particular polynomials

5.1. Application to the polynomials Un and Vn. For n ≥ 1, the polynomials Un =

L(−1/2,−1/2)
n and Vn = L(−3/2,−1/2)

n defined above, Propositions 1, 5 and 6 give

Un (x) = e−x ∑
k≥0

〈
k+1

2

〉
n

xk

k! , Vn (x) = e−x ∑
k≥0

〈
k+3

2

〉
n

xk

k! ,

Un (x) =
n
∑

k=0
S−1/2,−1/2 (n, k) xk, Vn (x) =

n
∑

k=0
S−3/2,−1/2 (n, k) xk,

Un (x) =
n
∑

j=0

(
n
∑

k=j

|s(n,k)|
2k

)
Bj (x) , Vn (x) =

n
∑

j=0

1
3j

(
n
∑

k=j
|s (n, k)|

(3
2

)k
)
Bj (x) ,

Un (x) =
n
∑

k=0
B(1)

n+1,k+1

(〈
1
2

〉
j
;
〈

1
2

〉
j−1

)
xk, Vn (x) =

n
∑

k=0
B(1)

n+1,k+1

(〈
1
2

〉
j
;
〈3

2

〉
j−1

)
xk.

Theorem 12 proves that the polynomials Un and Vn, n ≥ 1, have only real zeros and
Theorem 8 shows that, for x > 0, there hold

Un

(
1√
x

)
= (−1)n xn√xe−

1√
x

(
d

dx

)n ( 1√
x

e
1√
x

)
,

Vn

(
1√
x

)
= (−1)n xn+1√xe−

1√
x

(
d

dx

)n ( 1
x
√

x
e

1√
x

)
and

Un
(√

x
)

=
√

xe−
√

x
(

d
dx

)n (
xn−1√xe

√
x
)

,

Vn
(√

x
)

=
√

xe−x
√

x
(

d
dx

)n (
xn−1√xex

√
x
)

.
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5.2. Application to the generalized Laguerre polynomials. We note here that the se-
quence of generalized Laguerre polynomials

(
L
(λ)
n (x)

)
(see for example [4, 9, 27])

defined by

∑
n≥0

L
(λ)
n (x) tn = (1− t)−λ−1 exp

(
− xt

1− t

)
presents a particular case of the sequence

(
L(α,β)

n (x)
)

, i.e. L
(λ)
n (x) = 1

n! L
(−λ−1,−1)
n (x) .

Propositions 1, 5 and 6 give

L
(λ)
n (x) =

e−x

n! ∑
k≥0
〈λ + 1 + k〉n

xk

k!
,

L
(λ)
n (x) =

1
n!

n

∑
k=0

(−1)n−k
(

n
k

)
〈λ + 1 + k〉n−k xk,

L
(λ)
n (x) =

1
n!

n

∑
j=0

(
n

∑
k=j
|s (n, k)| (λ + 1)k−j

)
Bj (x) ,

L
(λ)
n (x) =

1
n!

n

∑
k=0

B(1)
n+1,k+1

(
〈1〉j ; 〈λ + 1〉j−1

)
xk.

Corollary 9 gives

L
(λ)
n (x) =

1
n!

L(−λ−1,−1)
n (x)

=
(−1)n

n!
L(n+λ,1)

n (x)

=
(−1)n

n!

(
d
dt

)n

t=0

(
(1− t)n+λ e−xt

)
=

1
n!

n

∑
k=0

(
n
k

)
(n + λ)n−k xk.

To write L(α,β)
n (x) in the basis

{
1, L

(λ)
1 (x) , . . . , L

(λ)
n (x)

}
, set (α′, β′) = (−λ− 1,−1) in

Proposition 17 to obtain

L(α,β)
n (x) =

n

∑
j=0

(−1)j j!Sα−(λ+1)β,−β (n, j)L
(λ)
j (x) .

Theorem 12 proves the known property on the generalized Laguerre polynomials L
(λ)
n ,

n ≥ 1, that have only real zeros (here for λ ≥ −2), for more information about the real
zeros of Laguerre polynomials see for example [8]. Theorem 8 shows that, for x > 0,
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there hold

L
(λ)
n

(
1
x

)
=

(−1)n

n!
xn+1+λe−

1
x

(
d

dx

)n (
x−λ−1e

1
x

)
,

L
(λ)
n (x) =

x−λe−x

n!

(
d

dx

)n (
xn+λex

)
.

We remark that for λ = 2r− 1 be a positive odd integer, we obtain

L
(2r−1)
n

(
1
x

)
=

(−1)n

n!
xn+2re−

1
x

(
d

dx

)n ( 1
x2r e

1
x

)
=

1
n!

n

∑
k=0

Lr (n + r, k + r)
xk ,

where Lr (n, k) is the (n, k)-th r-Lah number, see [4, 22, 24].

5.3. Application to the associated Lah polynomials. Let m be a positive integer. The
sequence of the associated Lah polynomials

(
L(m)

n (x)
)

are studied in [2, 23] and are
defined by

∑
n≥0
L(m)

n (x)
tn

n!
= exp

(
x
(
(1− t)−m − 1

))
.

This shows that L(m)
n (x) = L(0,−m)

n (x) . Propositions 1, 5 and 6 give

L(m)
n (x) = e−x ∑

k≥0
〈mk〉n xk

k! , L(m)
n (x) =

n
∑

k=0
S0,−m (n, k) xk,

L(m)
n (x) =

n
∑

j=0
mj |s (n, j)| Bj (x) , L(m)

n (x) =
n
∑

k=0
Bn,k

(
〈m〉j

)
xk.

To write L(α,β)
n (x) in the basis

{
1,L(m)

1 (x) , . . . ,L(m)
n (x)

}
, set (α′, β′) = (0,−m) in

Proposition 17 to obtain

L(α,β)
n (x) =

n

∑
j=0

(−1)j S
α,− β

m
(n, j)L(m)

j (x) .

Theorem 12 proves a known property of the associated Lah polynomials L(m)
n , n ≥ 1,

that have only real zeros and Theorem 8 shows that, for x > 0, there hold

L(m)
n

(
1

xm

)
= (−1)n xne−1/xm

(
d

dx

)n (
e1/xm

)
,

L(m)
n (xm) = xe−xm

(
d

dx

)n (
xn−1exm

)
.
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