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Abstract. Let p(x) = a0 + a1x + . . . + anxn be a polynomial with all roots real and
satisfying x ≤ −δ for some 0 < δ < 1. We show that for any 0 < ε < 1, the value
of p(1) is determined within relative error ε by the coefficients ak with k ≤ c√

δ
ln n

ε
√

δ

for some absolute constant c > 0. As a corollary, we show that if mk(G) is the number
of matchings with k edges in a graph G, then for any 0 < ε < 1, the total number
M(G) = m0(G) + m1(G) + . . . of matchings can be approximated within relative error
ε in polynomial time from the numbers mk(G) with k ≤ c

√
∆ ln(v/ε), where ∆ is the

largest degree of a vertex, v is the number of vertices of G and c > 0 is an absolute
constant. We prove a similar result for polynomials with complex roots satisfying < z ≤
−δ and apply it to estimate the number of unbranched subgraphs of G.
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imation, algorithm
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1. Introduction and main results

Our main motivation comes from the observation that in some cases, the total num-
ber of combinatorial structures of a particular type is determined with high accuracy
by the exact number of the structures of the same type but of a small (sometimes, very
small) size. We deduce it from some general results on the approximation of the value
of a polynomial from its first few lowest coefficients.

Below we talk about approximating some real and complex values up to “relative
error ε". Given a complex number a 6= 0, we say that a complex number b 6= 0
approximates a up to (or within) relative error ε > 0 if we can write a = ez and b = ew

for some complex numbers z and w such that |z− w| ≤ ε.
We prove the following main result.

Theorem 1.1. Suppose that p(x) = a0 + a1x + . . . + anxn is a polynomial and all roots x of p
are real and satisfy x ≤ −δ for some 0 < δ < 1. Then, for any 0 < ε < 1, the value of p(1),
up to relative error ε, is determined by the coefficients ak with

k ≤ c√
δ

ln
n

ε
√

δ
,

where c > 0 is an absolute constant.
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2 APPROXIMATING REAL-ROOTED AND STABLE POLYNOMIALS

In fact, we present a polynomial time algorithm, which, given a0, . . . , ak with k as in
the theorem, computes p(1) within relative error ε. Theorem 1.1 is a much improved
version of the “personal communication" of the author that was referred to in [16].

As a prime example, we consider matchings in a given graph. We consider undi-
rected graphs, without loops or multiple edges. Recall that a matching in a graph is a
collection, possibly empty, of vertex-disjoint edges of the graph. In statistical physics,
matchings are known as monomer-dimer systems, with edges of the matching corre-
sponding to dimers and vertices not covered by the edges of the matching correspond-
ing to monomers. Matchings have been thoroughly studied for quite some time, see
[15] for a standard reference.

Given a graph G with v(G) vertices, let mk(G) be the number of matchings containing
exactly k edges and let

M(G) =
v(G)/2

∑
k=0

mk(G)

be the total number of matchings in G. The numbers mk(G) and M(G) were extensively
studied, from the statistical (see, for example, [12]) and computational (randomized [10]
and deterministic [2]) points of view.

Using the Heilmann-Lieb Theorem [9], see also [8], we immediately deduce from
Theorem 1.1 that the total number of matchings M(G) in a graph is determined with
high accuracy by the numbers mk(G) of matchings with a relatively small number k of
edges.

Theorem 1.2. For a graph G, let mk(G) be the number of matchings that contain exactly k
edges and let M(G) = m0(G) + m1(G) + . . . be the total number of matchings. Then, for any
0 < ε < 1, up to relative error ε, the number M(G) is determined by the numbers mk(G) with

k ≤ c
√

∆(G) ln
v(G)

ε
,

where ∆(G) is the largest degree of a vertex of the graph, v(G) is the number of vertices of G
and c > 0 is an absolute constant.

Again, we have a polynomial time algorithm, which, given mk(G), with k as in the
theorem, produces an estimate of M(G) within relative error ε. We note that Patel
and Regts [16] constructed a polynomial time algorithm for computing mk(G) with
k = O(ln v(G)) provided the largest degree ∆(G) is fixed in advance (a straightforward
enumeration gives only a quasi-polynomial algorithm of v(G)O(ln v(G)) complexity).

For general graphs, the complexity of the algorithm roughly matches that of Bayati
et al. [2], which estimates M(G) using the correlation decay approach. Although our
approach and that of [2] look completely different, they are both inspired by the concept
of “phase transition" coming from statistical physics; more precisely, two related, but
different concepts: ours has to do with the Lee-Yang approach via complex zeros of
the “partition function" [21], [13] while that of [2] has to do with correlation decay, cf.
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[6] and [12]. Hence the fact that the complexity appears to be roughly the same is not
entirely accidental.

The idea of the correlation decay approach is roughly as follows. We consider the
set of all matchings in G as a probability space with the uniform measure. Then to
compute M(G) it suffices to compute the probability that a vertex, say a, of G is covered
by a random matching. It turns out that this event is asymptotically independent on
whether the vertices of G sufficiently remote from a, are covered by a random matching
and hence the desired probability can be approximated from the local structure of G in
the vicinity of a. It follows from [2] that up to relative error ε the number M(G) can
be determined from the local structure of G in k-neighborhoods of the vertices, where
k = O

(√
∆(G) ln v(G)

ε

)
. In contrast, Theorem 1.2 states that to approximate M(G) we

do not need to know any fine local structure, but just the numbers mk(G) for those
values of k. We also note that to compute M(G) exactly is a #P-hard problem and
that there is a fully polynomial randomized approximation scheme [10], based on the
Markov Chain Monte Carlo approach.

Using the Chudnovsky-Seymour extension [5] of the Heilmann-Lieb Theorem and
the Dobrushin-Shearer bound on the roots of the independence polynomial, see, for
example, [19], we get another combinatorial application. Recall that a subset of vertices
of a graph is called an independent set if no two vertices of the subset span an edge of the
graph. A graph is called claw-free if it does not contain an induced subgraph consisting
of a vertex connected to some other three vertices that are pairwise unconnected. We
obtain the following result.

Theorem 1.3. For a graph G, let ik(G) be the number of independent sets with exactly k
vertices and let I(G) = i0(G) + i1(G) + . . . be the total number of independent sets. Then, for
any 0 < ε < 1, up to relative error ε, the number I(G) of a claw-free graph is determined by
the numbers ik(G) with

k ≤ c
√

∆(G) ln
v(G)

ε
,

where ∆(G) is the largest degree of a vertex of the graph, v(G) is the number of vertices of G
and c > 0 is an absolute constant.

We have a polynomial time algorithm, which, given ik(G), with k as in the theorem,
produces an estimate of I(G) within relative error ε. Curiously, while the correlation
decay approach of [2] is essentially harder in the case of independent sets in claw-free
graphs than it is in the case of matchings, our approach is the same in both cases
(assuming, of course, the hard work done in [9] and [5]).

Theorems 1.2 and 1.3 vaguely resemble the “approximate inclusion-exclusion" of [14]
and [11]. The methods, however, look completely different. It would be interesting to
find out if there is indeed any connection between our Theorem 1.1 and the results of
[14] and [11].
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Next, we consider polynomials p(z) = a0 + a1z + . . . + anzn with complex roots sat-
isfying < z ≤ −δ for some 0 < δ < 1 (we call such polynomials “stable"). We allow
complex coefficients ak. We obtain the following result.

Theorem 1.4. Suppose that p(z) = a0 + a1z + . . . + anzn is a complex polynomial and all
roots z of p satisfy < z ≤ −δ for some 0 < δ < 1. Then, for any 0 < ε < 1, the value of p(1),
up to relative error ε, is determined by the coefficients ak with

k ≤ c
δ

ln
n
εδ

,

where c > 0 is an absolute constant.

We apply Theorem 1.4 to count unbranched subgraphs, that is, collections of edges of
the graph such that every vertex of the graph is incident to at most two edges from
the collection. From Ruelle’s Theorem [17], [18], see also [20], we deduce the following
result.

Theorem 1.5. For a graph G, let uk(G) be the number of unbranched subgraphs with exactly
k edges and let U(G) = u0(G) + u1(G) + . . . be the total number of unbranched subgraphs.
Then, for any 0 < ε < 1, up to relative error ε, the number U(G) is determined by the numbers
uk(G) with

k ≤ c (∆(G))3 ln
v(G)

ε
,

where ∆(G) is the largest degree of a vertex of the graph, v(G) is the number of vertices of G
and c > 0 is an absolute constant.

One can easily see that if a non-constant polynomial p satisfies the conditions of
Theorems 1.1 or 1.4 then so does its derivative p′. Therefore, in Theorems 1.2, 1.3 and
1.5, we can not only estimate the number of structures of a given type (matchings,
independent sets or unbranched subgraphs) by counting structures up to some small
size, but also estimate the average size of a structure, the second moment, etc.

Finally, we mention the following result implicit in Section 2.2 of [1].

Theorem 1.6. Let us fix a connected open set U ⊂ C containing 0 and 1. Then there exists a
constant γ = γ(U) > 0 such that the following holds. Suppose that

p(z) =
n

∑
k=0

akzk, n ≥ 2,

is a polynomial such that p(z) 6= 0 for all z ∈ U. Then, for any 0 < ε < 1, the value of p(1),
up to relative error ε, is determined by the coefficients ak with

k ≤ γ (ln n− ln ε) .

In particular, Lemma 2.2.3 of [1] implies that if U is a δ-neighborhood of the interval
[0, 1] ⊂ C for some 0 < δ < 1 (we measure distances by identifying C = R2) then one
can choose

γ(U) = eO(1/δ).
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For applications to computing partition functions, see [1]. We can replace the expo-
nential dependence on 1/δ by a polynomial dependence if we assume that p(z) 6= 0
for z in the δ-neighborhood of the sector | arg z| < α for some fixed α > 0 and some
δ > 0. We briefly discuss this in Section 2 and applications to counting subgraphs with
prescribed degrees and independent sets in some graphs in Section 3.

We prove Theorems 1.1 and 1.4 in Section 2 and Theorems 1.2, 1.3 and 1.5 in Section
3.

2. Proofs of Theorems 1.1 and 1.4

We denote the complex plane by C, the Riemann sphere C∪ {∞} by Ĉ and the open
unit disc by D, so that

D = {z ∈ C : |z| < 1} .
By c we denote a positive absolute constant, whose value may change from line to line.

We start with a couple of lemmas.

Lemma 2.1. Let h1, h2 : C −→ C be polynomials of degrees n1 and n2 respectively and let

g(z) =
h1(z)
h2(z)

, g : Ĉ −→ Ĉ,

be a rational function. Let β > 1 be a real number and suppose that

h1(z) 6= 0 and h2(z) 6= 0 provided |z| < β,

so g has neither zeros no poles in the disc βD = {z ∈ C : |z| < β}.
Let us choose a branch of

f (z) = ln g(z) where |z| < β

and let

Tm(z) = f (0) +
m

∑
k=1

f (k)(0)
k!

zk

be the Taylor polynomial of degree m of f (z) computed at z = 0. Then

| f (1)− Tm(1)| ≤
n1 + n2

βm(β− 1)(m + 1)
.

Proof. In the case when g(z) is a polynomial (that is, when h2(z) ≡ 1), this is Lemma
2.2.1 of [1]. The proof below in the case of a rational function is very similar.

Let α11, . . . , α1n1 be the roots of h1 and let α21, . . . , α2n2 be the roots of h2, counting
multiplicity. Hence

h1(z) = h1(0)
n1

∏
i=1

(
1− z

α1i

)
and h2(z) = h2(0)

n2

∏
j=1

(
1− z

α2j

)
,

where

|α1i| ≥ β for i = 1, . . . , n1 and |α2j| ≥ β for j = 1, . . . , n2.

Online Journal of Analytic Combinatorics, Issue 14 (2019), #08
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Then

f (z) = f (0) +
n1

∑
i=1

ln
(

1− z
α1i

)
−

n2

∑
j=1

ln

(
1− z

α2j

)
,

where we choose the branch of the logarithm so that ln 1 = 0.
Approximating the logarithms by their Taylor polynomials, we obtain

ln
(

1− 1
α1i

)
= −

m

∑
k=1

1
kαk

1i
+ η1i and ln

(
1− 1

α2j

)
= −

m

∑
k=1

1
kαk

2j
+ η2j,

where

|η1i| =
∣∣∣∣∣ ∞

∑
k=m+1

1
kαk

1i

∣∣∣∣∣ ≤ 1
m + 1

∞

∑
k=m+1

1
βk =

1
(m + 1)βm(β− 1)

for i = 1, . . . , n1 and, similarly,

∣∣η2j
∣∣ = ∣∣∣∣∣ ∞

∑
k=m+1

1
kαk

2j

∣∣∣∣∣ ≤ 1
m + 1

∞

∑
k=m+1

1
βk =

1
(m + 1)βm(β− 1)

for j = 1, . . . , n2.
Since

Tm(1) = −
n1

∑
i=1

m

∑
k=1

1
kαk

1i
+

n2

∑
j=1

m

∑
k=1

1
kαk

2j
,

the proof follows.
�

Corollary 2.2. For 0 < ε < 1, under the conditions of Lemma 2.1, we have

| f (1)− Tm(1)| ≤ ε

provided

m ≥ c
β− 1

ln
n1 + n2

ε(β− 1)

where c > 0 is an absolute constant.

Proof. Follows by Lemma 2.1.
�

To compute the value of Tm(1) in Lemma 2.1 and Corollary 2.2, we need to com-
pute the derivatives f (k)(0) for k = 0, 1, . . . , m. This, in turn, reduces to computing
the derivatives g(k)(0) for k = 0, 1, . . . , m, as is explained in Section 2.2.2 of [1]. For
completeness, we describe the procedure here.
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2.1. Computing f (k)(0) from g(k)(0). We have

f ′(z) =
g′(z)
g(z)

from which g′(z) = f ′(z)g(z)

and hence

(2.1) g(k)(0) =
k−1

∑
j=0

(
k− 1

j

)
f (k−j)(0)g(j)(0) for k = 1, . . . , m.

Now, (2.1) is a triangular system of linear equations in the variables f (k)(0) for k =

1, . . . , m with diagonal coefficients g(0)(0) = g(0) 6= 0, so the matrix of the system is
invertible. Given the values of g(0) and g(k)(0) for k = 1, . . . , m, one can compute the
values of f (k)(0) for k = 1, . . . , m in O(m2) time. This is, of course, akin to computing
cumulants of a probability distribution from its moments.

Finally, we employ a rational transformation.

Lemma 2.3. For real 0 < ρ < 1, let

ξ = ξρ = 1−
√

ρ

1 + ρ
, β = βρ = ξ−1 ≥ 1 +

√
ρ.

and let
ψ = ψρ(z) =

ρ

(1− ξz)2 − ρ, ψ : Ĉ −→ Ĉ,

be a rational function. Then ψ(0) = 0, ψ(1) = 1 and the image of the disc

βD = {z ∈ C : |z| < β}
under ψ does not intersect the ray{

z ∈ C : = z = 0 and < z ≤ −3ρ

4

}
.

Proof. Clearly, ψ(0) = 0 and ψ(1) = 1. For z ∈ βD, we have |ξz| < 1 and hence

arg
1

1− ξz
<

π

2
.

Therefore the image of βD under the map

(2.2) z 7−→ ρ

(1− ξz)2

does not contain the non-positive real ray

R− = {z ∈ C : = z = 0, < z ≤ 0} .

The real values of the map (2.2) on the disc βD are attained when z is real, and are
larger than ρ/4, which is attained when z = −β.

The proof now follows.
�

Now we are ready to prove Theorem 1.1.

Online Journal of Analytic Combinatorics, Issue 14 (2019), #08
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2.2. Proof of Theorem 1.1. Let ρ = 4δ/3 and let ψ = ψρ : Ĉ −→ Ĉ be the correspond-
ing rational transformation of Lemma 2.3. We consider the composition

g(z) = p (ψ(z)) .

Clearly, g(0) = p(0) and g(1) = p(1). Let

ξ = 1−
√

ρ

1 + ρ
and β = ξ−1 ≥ 1 +

√
4δ

3
,

as in Lemma 2.3. Since the image ψ (βD) does not intersect the ray

R = {z ∈ C : = z = 0 and < z ≤ −δ} ,

we conclude that
g(z) 6= 0 provided |z| < β.

For some polynomials h1(z) and h2(z), we can write

g(z) =
h1(z)
h2(z)

where h2(z) = (1− ξz)2n and deg h2(z) ≤ 2n.

Let us choose a branch of

f (z) = ln g(z) for |z| < β

and let Tm(z) be the Taylor polynomial of f of degree m, computed at z = 0. From
Corollary 2.2, we have

|Tm(1)− f (1)| = |Tm(1)− ln p(1)| ≤ ε,

as long as

m ≥ c√
δ

ln
n

ε
√

δ
for some absolute constant c > 0.

It remains to show how to compute the values f (k)(0) for k = 0, . . . , m from the
coefficients ak, k = 0, 1, . . . , m, of the polynomial p. First, we compute the values g(k)(0)
for k = 0, . . . , m. To that effect, let

p[m](z) =
m

∑
k=0

akzk

be the truncation of the polynomial p and let

ψ[m](z) = ρ
m

∑
k=1

(k + 1)ξkzk

be the truncation of the Taylor series expansion of ψ(z) in the disc βD. Note that since
ψ(0) = 0, the constant term of the expansion is 0. We then compute the composition

p[m]

(
ψ[m](z)

)
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and discard the terms of degree higher than m. A fast way to do it is by Horner’s
method, successively computing(

. . .
((

amψ[m](z) + am−1

)
ψ[m](z)

)
+ . . .

)
ψ[m](z) + a0

and discarding monomials of degree higher than m on each step. This gives us the
Taylor polynomial of degree m of g(z), computed at z = 0. We then compute the
derivatives f (k)(0) as in Section 2.3.

To prove Theorem 1.4, we use a different (simpler) rational transformation.

Lemma 2.4. For real 0 < ρ < 1, let

ξ = ξρ =
1

1 + ρ
, β = βρ = ξ−1 = 1 + ρ.

and let
ψ = ψρ(z) =

ρ

1− ξz
− ρ, ψ : Ĉ −→ Ĉ,

be a rational function. Then ψ(0) = 0, ψ(1) = 1 and the image of the disc

βD = {z ∈ C : |z| < β}

under ψ does not intersect the half-plane

{z ∈ C : < z ≤ −ρ} .

Proof. Clearly, ψ(0) = 0 and ψ(1) = 1. For z ∈ βD, we have |ξz| < 1 and hence

arg
1

1− ξz
<

π

2
.

Therefore, the image of βD under the map

z 7−→ 1
1− ξz

does not intersect the half-plane < z ≤ 0.
The proof now follows.

�

2.3. Proof of Theorem 1.4. We define the transformation ψ = ψδ as in Lemma 2.4,
consider the composition g(z) = p(ψ(z)) and proceed as in the proof on Theorem 1.1
in Section 2.5 with straightforward modifications.

2.3.1. Remark: approximating p′(1). It follows from Rolle’s Theorem that if p(x) = a0 +
a1x + . . . + anxn is a non-constant polynomial satisfying the conditions of Theorem 1.1
then p′(x) = a1 + 2a2x + . . . + nanxn−1 also satisfies the conditions of Theorem 1.1.
Similarly, it follows from the Gauss-Lucas Theorem that if a non-constant polynomial
p(z) satisfies the conditions of Theorem 1.4, then so does p′(z).

Online Journal of Analytic Combinatorics, Issue 14 (2019), #08
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2.4. Possible ramifications. To prove Theorem 1.6, we construct an auxiliary polyno-
mial ψ(z) such that for some β > 1 the image ψ (βD) lies in U and, additionally,
ψ(0) = 0 and ψ(1) = 1. Then the proof proceeds as in Section 2.5. Such a polynomial
ψ can be found from the Riemann Conformal Mapping Theorem (this was pointed out
to the author by P. Etingof [7]). To that end, let us choose an open simply connected set
U′ ⊂ U containing 0 and 1 and such that the ε-neighborhood of U′ lies in U for some
ε > 0. It suffices to construct an analytic map φ : β′D −→ U′ for some β′ > 1 such
that φ(0) = 0 and φ(1) = 1. Then using the Runge Theorem (see, for example, Chapter
VIII of [4]), we approximate φ uniformly and sufficiently close by a polynomial ψ̂ on
the closed disc βD for some 1 < β < β′, so that the polynomial

ψ(z) =
ψ̂(z)− ψ̂(0)
ψ̂(1)− ψ̂(0)

satisfies the required property. To construct a map φ as above, using the Riemann
Theorem (see, for example, Chapter VII of [4]), we construct a conformal isomorphism
φ̂ : D −→ U′ such that φ̂(0) = 0. Let ζ ∈ D satisfy φ̂(ζ) = 1. Combining φ̂ with a
rotation of the disc, if necessary, we can assume that 0 < ζ < 1 is a real number. We let
β′ = ζ−1 and define φ : β′D −→ U′ by

φ(z) = φ̂(ζz).

Suppose now that p(z) is a polynomial of degree n such that p(z) 6= 0 whenever z
lies in the δ-neighborhood of the sector

Sα = {z ∈ C \ {0} : | arg z| ≤ α}

for some fixed α > 0 and some δ > 0. In this case, for 0 < ρ < 1 define

ξ = ξρ = 1−
(

ρ

1 + ρ

)π/2α

, β = βρ = ξ−1

(
1− 1

2

(
ρ

1 + ρ

)π/2α
)

> 1

and consider the (well-defined) map

ψ(z) = ψρ(z) = ρ (1− ξz)−2α/π − ρ for |z| < β.

We observe that ψ(0) = 0, ψ(1) = 1 and one can show that by choosing ρ small enough,
we can make sure that the image of the disc βD lies in a prescribed neighborhood of the
sector | arg z| ≤ α. We then can use a sufficiently accurate polynomial approximation ψ̃
to ψ to show that the value of p(1), up to relative error ε, is determined by the lowest

c
δπ/2α

ln
n

εδπ/2α

coefficients of p, where c > 0 is an absolute constant.
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3. Proofs of Theorems 1.2, 1.3, and 1.5

3.1. Proof of Theorem 1.2. Given a graph G, we define its matching polynomial by

p(x) = 1 +
v(G)/2

∑
k=1

mk(G)xk.

The Heilmann-Lieb Theorem [9], see also [8], asserts that the roots x of p(x) are real
and satisfy x ≤ −δ for

δ =
1

4 (∆− 1)
for ∆ = max {∆(G), 2} .

The proof now follows from Theorem 1.1.

3.2. Proof of Theorem 1.3. Given a graph G, we define its independence polynomial by

p(x) = 1 +
v(G)

∑
k=1

ik(G)xk.

Chudnovsky and Seymour proved [5] that if G is claw-free, then the roots of p(x) are
necessarily non-positive real, see also [3] for an alternative proof and an extension of
the result. On the other hand, the Dobrushin-Shearer bound, cf. [19], states that the
roots z of the independence polynomial of any graph G satisfy

|z| ≥ (∆− 1)∆−1

∆∆ =
1

∆e

(
1 + O

(
1
∆

))
as ∆ −→ ∞,

where ∆ = max{2, ∆(G)}. The proof now follows from Theorem 1.1.

3.3. Proof of Theorem 1.5. Given a graph G, we define its unbranched subgraph polyno-
mial by

p(z) = 1 +
v(G)

∑
k=1

uk(G)zk.

Ruelle proved [17], [18], see also [20], that all roots z of p(z) satisfy

< z ≤ − 2
∆(∆− 1)2 for ∆ = max {2, ∆(G)} .

The proof now follows from Theorem 1.4.

3.4. Estimating averages. We note that the value p′(1)
p(1) is interpreted the average num-

ber of edges in a matching in Theorem 1.2, the average number of vertices in an inde-
pendent set in Theorem 1.3 and the average number of edges in a unbranched subgraph
in Theorem 1.5. It follows from Remark 2.3.1 that we can estimate the averages within
relative error ε > 0 by inspecting the matchings, independent sets and unbranched
subgraphs of pretty much the same size as prescribed by Theorems 1.2, 1.3, and 1.5,
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though with different absolute constants. Similarly, by computing p′′(1)
p(1) we can estimate

the second moment, etc.

3.5. Possible ramifications. For each vertex w of a graph G, let us choose a set Aw of
allowable degrees of subgraphs. Wagner proved [20] that if 0 ∈ Aw ⊂ {0, 1, 2} for all
vertices w, then the corresponding subgraph counting polynomial is non-zero in the
sector

Sπ/3 =
{

z ∈ C : | arg z| < π

3

}
and is also non-zero in a δ-neighborhood of z = 0 for some δ = Ω(1/∆(G)). Using
the approach sketched in Section 2.9, one can show that within relative error ε > 0, the
total number of such subgraphs is determined by the numbers of subgraphs with

(3.1) k = (∆(G))O(1) ln
v(G)

ε

edges.
In [3], Bencs shows that the independence polynomials of graphs satisfying some

weakening of the claw-free condition do not have roots in a sector | arg z| < α. For such
graphs, the total number of independent sets is determined, within prescribed relative
error, by the numbers of independent sets of a small size k as in (3.1).
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