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Abstract. As suggested by Currie, we apply the probabilistic method to problems re-
garding pattern avoidance. Using techniques from analytic combinatorics, we calculate
asymptotic mean pattern occurrence and use them in conjunction with the probabilistic
method to establish new results about the Ramsey theory of unavoidable patterns in the
abelian full word case and in the nonabelian partial word case.
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1. Introduction

In [13], Currie reviews results and formulates a large number of open problems
concerning pattern avoidance as well as an abelian variation of it. Given a pattern p
over an alphabet V and a word w over an alphabet A, we say that w encounters p if there
exists a nonerasing morphism h : V∗ → A∗ such that h(p) is a factor of w; otherwise
w avoids p. In other words, w encounters p = p1 · · · pn, where p1, . . . , pn ∈ V , if w
contains u1 · · · un as a factor, where u1, . . . , un are nonempty words in A∗ satisfying
ui = uj whenever pi = pj. On the other hand, w encounters p = p1 · · · pn in the abelian
sense if w contains u1 · · · un as a factor, where ui can be obtained from uj by rearranging
letters whenever pi = pj; otherwise w avoids p in the abelian sense.

Words avoiding patterns such as squares have been used to build several counterex-
amples in context-free languages [26], groups [1], lattice of varieties [19], partially or-
dered sets [33], semigroups [14, 20], symbolic dynamics [27], to name a few. Words
avoiding squares in the abelian sense have also been used in the study of free partially
commutative monoids [12,15], and have helped characterize the repetitive commutative
semigroups [20]. In addition, words avoiding more general patterns find applications
in algorithmic problems on algebraic structures [22].

In this paper, we meet the goal of Problem 4 as expressed by Currie in [13], which is
to “explore the scope of application of the probabilistic method to problems in pattern
avoidance.” The probabilistic method [2], pioneered by Erdős, has recently become
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one of the most powerful techniques in combinatorics. It is used to demonstrate, via
statistical means, the existence of certain combinatorial objects without constructing
them explicitly. Analytic combinatorics [17], pioneered by Flajolet and Sedgewick and
expanded to the multivariate case [28] by Pemantle and Wilson, allows precise cal-
culation of the statistics of large combinatorial structures by studying their associated
generating functions through the lens of complex analysis. Since analytic combinatorics
calculates the statistics of large combinatorial structures, and the probabilistic method
uses such statistics to infer the existence of specific combinatorial objects, we use both
techniques in tandem to prove some Ramsey theoretic results about pattern avoidance.

We also extend some of our results to partial words, which allow for undefined
positions represented by hole characters. In this context, given a pattern p over V and a
partial word w over A, we say that w encounters p if there exists a nonerasing morphism
h : V∗ → A∗ such that h(p) is compatible with a factor of w. Several results concerning
(abelian) pattern avoidance have recently been proved in this more general context of
partial words (see, for example, [3–9]).

The contents of our paper are as follows. In Section 2, we discuss some basic con-
cepts, fix some notations, and mention some previous results from the literature. In
Section 3, we discuss some tools, such as ordinary generating functions, and tech-
niques from analytic combinatorics. In Section 4, we use those tools and techniques in
conjunction with the probabilistic method to calculate asymptotic pattern occurrence
statistics and to establish new results about the Ramsey theory of unavoidable pat-
terns in the full word case (both nonabelian sense and abelian sense) and the partial
word case. Finally in Section 5, we suggest additional possible uses of these data in
applications such as cryptography and musicology. We also discuss a number of open
problems.

2. Basic concepts, notations, and known results

A (full) word over an alphabet A is a sequence of characters from A. We call the
characters in A letters. The number of characters in a word is its length. We denote by
A∗ the set of all words over A; when equipped with the concatenation or product of
words, where the empty word ε serves as identity, it is called the free monoid generated
by A. A word w over A encounters the word p over an alphabet V if w contains h(p)
as a factor for some nonerasing morphism h : V∗ → A∗. Otherwise w avoids p and
is p-free. In this case we interpret p to be a pattern. For example, the word tennessee
encounters the pattern abaca, as witnessed by the morphism h : {a, b, c}∗ → {e, n, s, t}∗
with h(a) = e, h(b) = nn, and h(c) = ss. Thus tennessee contains h(abaca) = ennesse, a
factor of tennessee.

We count multiple instances of a pattern in a word as follows: we say that w en-
counters p a total of N > 0 times if, for some maximal m > 0, there exist m distinct
nonerasing morphisms hi : V∗ → A∗ such that for some t1, . . . , tm > 0, hi(p) is a
factor of w exactly ti > 0 times, and ∑m

i=1 ti = N. For example, the word 11111111
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encounters the pattern aba 34 times because for 3 ≤ k ≤ 8, each of the 9− k factors of
length k lies in the image of b(k − 1)/2c nonerasing morphisms {a, b}∗ → {1}∗, and
6 · 1+ 5 · 1+ 4 · 2+ 3 · 2+ 2 · 3+ 1 · 3 = 34. One may object to this definition on the basis
that the factor 11111111 is counted as three occurrences of the pattern aba, but since
pattern occurrences are defined in terms of nonerasing morphisms, it makes sense to
count the same factor multiple times if it lies in the image of multiple distinct non-
erasing morphisms. Patterns are an abstract idea that goes beyond the concrete words
that they map to under these nonerasing morphisms; they are a kind of symmetry that
exists in the words in which they appear. For that reason the aba pattern group of the
factor 11111111 should be larger than that of a factor 12345671, just as the group O(2)
of symmetries of a circle is larger than the group D4 of symmetries of a square.

A partial word overA is a sequence of characters from the extended alphabetA+ {�},
where we refer to � as the hole character. Define the hole density of a partial word to be
the ratio of its number of holes to its length, i.e. d := h/n where d is the hole density, h
is the number of holes, and n is the length of the partial word. A completion of a partial
word w is a full word constructed by filling in the holes of w with letters from A.

If u = u1 · · · un and v = v1 · · · vn are partial words of equal length n, where u1, . . . , un
and v1, . . . , vn denote characters from A+ {�}, we say that u is compatible with v, de-
noted u ↑ v, if ui = vi whenever ui, vi ∈ A. A partial word w over A encounters the full
word p over V if some factor f of w satisfies f ↑ h(p) for some nonerasing morphism
h : V∗ → A∗. Otherwise w avoids p and is p-free. Again we interpret p to be a pattern.
For example, the partial word velve�ta encounters abab, as witnessed by the morphism
h : {a, b}∗ → {a, e, l, v, t}∗ with h(a) = ve and h(b) = l. Thus h(abab) = velvel, which is
compatible with velve�, a factor of velve�ta. We count multiple instances of a pattern
in a partial word as follows: we say that w encounters p a total of N > 0 times if,
for some maximal m > 0, there exist m distinct nonerasing morphisms hi : V∗ → A∗
such that, for some t1, . . . , tm > 0, there are ti factors fi of w that satisfy fi ↑ hi(p), and
∑m

i=1 ti = N.
Suppose p = p1 · · · pn where p1, . . . , pn ∈ V . A full word w encounters p in the abelian

sense if w contains u1 · · · un as a factor, where word ui can be obtained from word uj
by rearranging letters whenever pi = pj. Otherwise w avoids p in the abelian sense and
is abelian p-free. For example, the full word v al h al la encounters abaa in the abelian
sense. We count multiple instances of an abelian pattern in a word as follows: we say
that w encounters p in the abelian sense N > 0 times if, for some maximal m > 0, there
exist m distinct sequences of words Si of the form (u1, . . . , un) such that w contains
u1 · · · un as a factor ti > 0 times, word uj can be obtained from word uk by rearranging
letters whenever pj = pk, and ∑m

i=1 ti = N.
A pattern p is m-avoidable if there are arbitrarily long words over an m-letter alphabet

that avoid p. A pattern p is m-avoidable over partial words if for every h ∈ N there
is a partial word with h holes over an m-letter alphabet that avoids p. A pattern p
is m-avoidable in the abelian sense if there are arbitrarily long words over an m-letter
alphabet that avoid p in the abelian sense. Otherwise, p is, respectively, m-unavoidable,

Online Journal of Analytic Combinatorics, Issue 13 (2018), #05



4 JIM TAO

m-unavoidable over partial words, and m-unavoidable in the abelian sense. For example, the
Zimin patterns Zi where

(2.1) Z1 = a1 and Zi = Zi−1aiZi−1

are m-unavoidable for all m ≥ 1 [25]. They are also m-unavoidable over partial words
for all m ≥ 1 as well as m-unavoidable in the abelian sense for all m ≥ 1. Indeed, since
Zi occurs in a partial word whenever it occurs in some completion of the partial word,
Zi is unavoidable over partial words, and since all occurrences of Zi in the nonabelian
sense are occurrences of Zi in the abelian sense, Zi is unavoidable in the abelian sense.

Define the Ramsey length L(m, p) of an m-unavoidable pattern p to be the minimal
length of a word over an m-letter alphabet that ensures the occurrence of p. Similarly,
define the partial Ramsey length Ld(m, p) of a pattern p that is m-unavoidable over partial
words with hole density ≥ d to be the minimal length of a partial word with hole
density d over an m-letter alphabet that ensures the occurrence of p, and define the
abelian Ramsey length Lab(m, p) of a pattern p that is m-unavoidable in the abelian sense
to be the minimal length of a word over an m-letter alphabet that ensures the occurrence
of p in the abelian sense.

For small values of m and i, we have the following table of results for L(m, Zi), as
compiled in [10] from papers [31] and [32]:

2 3 4 5 k
1 1 1 1 1 1
2 5 7 9 11 2k + 1
3 29 ≤ 319 ≤ 3169 ≤ 37991 ≤

√
e2k(k + 1)! + 2k + 1

4 ∈ [10483, 236489]
n

Currently, the best known lower bound for L(m, Zi) is a tower of i − 3 exponentials,
even for m = 2.

Theorem 2.1. [10] For all i ≥ 1 and m ≥ 2, L(m, Zi) ≥ 2 ↑↑ (i− 3).

In the paper we do not improve on this lower bound, but the techniques we develop
and use also work for the abelian and partial word cases, helping us prove new lower
bounds for abelian and partial Ramsey lengths.

The best known upper bound for L(m, Zi) is a tower of exponentials of height i− 1.

Theorem 2.2. [11] For all i ≥ 1 and m ≥ 2, L(m, Zi) ≤ (2m + 1) ↑↑ (i− 1).

We prove another exponential tower upper bound which is not as good but can
gotten through brute force without a combinatorial argument.

Knuth’s up-arrow notation [23] as used above is defined as follows: For all integers
x, y, n such that y ≥ 0 and n ≥ 1:

x ↑n y =


xy if n = 1,
1 if y = 0,

x ↑n−1 (x ↑n (y− 1)) otherwise.
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More specifically, we use the double up-arrow, i.e. the above operator where n = 2.
For example, 3 ↑↑ 3 = 333

. We make use of the following identity regarding double
up-arrows

(2.2) x ↑↑ (n + 1) = xx↑↑n,

which follows by induction on n ≥ 0. Using the same example as before, we observe
that 3 ↑↑ 3 = 33↑↑2 = 333

.

3. Tools and techniques

For standard terms and theorems related to the symbolic method, we refer the reader
to the book of Flajolet and Sedgewick [17].

We can often specify a combinatorial class by performing a series of operations on
basic “atomic” objects of size 1: cartesian product B × C, combinatorial sum (disjoint
union) B + C, sequence construction SEQ(B), and substitution B ◦ C, where B, C are
combinatorial classes [17, pp. 25–26, 87]. As it turns out, specifications of combinatorial
classes translate directly into generating functions. According to the admissibility the-
orem for ordinary generating functions [17, pp. 27, 87], the OGFs of such classes admit
convenient closed-form expressions.

We recall some basic constructions [17, p. 50]: The class E = {ε} consisting of the
neutral object only, and the class Z consisting of a single “atomic” object (node, letter)
of size 1 have OGFs E(z) = 1 and Z(z) = z, respectively. Let A = mZ denote an
alphabet of m letters and W = SEQ(A) denote the set of all possible words over A.
Then A andW have associated OGFs A(z) = mz and W(z) = 1/(1−mz), respectively.

Tuples or repetitions of letters and words make an appearance frequently in our
arguments. We construct them as follows: Let Jk = A ◦ Z k be the set of all k-tuples of
the same letter in A and let Kk = W ◦ Z k be the set of all k-tuples of the same word
over A. Then Jk and Kk have associated OGFs Jk(z) = mzk and Kk = 1/(1−mzk).

The following theorem greatly simplifies the process of finding the asymptotics of a
sequence, given knowledge of its generating function.

Theorem 3.1. [17, p. 258] Let f (z) be a function meromorphic at all points of the closed
disc |z| ≤ R, with poles at points α1, α2, . . . , αr. Assume that f (z) is analytic at all points of
|z| = R and at z = 0. Then there exist r polynomials {Pj}r

j=1 such that

fn := [zn] f (z) =
r

∑
j=1

Pj(n)α−n
j + O(R−n).

Furthermore the degree of Pj is equal to the order of the pole of f at αj minus one.

The following theorem formalizes our use of the probabilistic method.
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Theorem 3.2. [2, p. 18] Let (Ω,F , P) be a probability space and X : Ω→ R be a real-valued
random variable, i.e. such that for all x ∈ R, {ω ∈ Ω : X(ω) ≤ x} ∈ F . Let

E[X] :=
∫

Ω
X(ω)dP(ω)

denote the mathematical expectation of X. If E[X] < ∞, then for some ω ∈ Ω, X(ω) ≤ E[X].

Straightforward applications of the probabilistic method often give crude results, as
demonstrated below; nevertheless, they still provide important qualitative information.

Define the kth Ramsey number R(k) to be the minimal value of n in the statement of
Ramsey’s theorem, Theorem 3.3, for a given value of k.

Theorem 3.3. [29] For every positive integer k there is a positive integer n, such that if the
edges of the complete graph on n vertices are all colored either red or blue, then there must be k
vertices such that all edges joining them have the same color.

In 1947, Erdős proved the following result.

Theorem 3.4. R(k) ≥ 2k/2 for all k ≥ 2.

Erdős’ lower bound, exponential with base
√

2, is rough (and so are all lower bounds
on R(k) proven since then) because the best known upper bounds are exponential
with base 4. In fact, some of the major open problems in combinatorics, according to
Gowers [18], are the following: Does there exist a constant a >

√
2 such that R(k) ≥ ak

for all sufficiently large k? Does there exist a constant b < 4 such that R(k) ≤ bk for all
sufficiently large k? Although Erdős’ lower bound for R(k) is crude, it tells us valuable
information about R(k), namely that it grows at least exponentially.

4. Mean pattern occurrence: the full word case

We calculate mean pattern occurrence and prove results about the Ramsey theory of
unavoidable patterns in the following cases: nonabelian full words, abelian full words,
and nonabelian partial words. We calculate the mean number of occurrences of a
pattern in a word of a given length and use that statistic to establish a lower bound on
Ramsey lengths.

Theorem 4.1 together with Corollary 4.3 answer the basic question as to when a full
word can avoid a given pattern. Theorem 4.2 together with Corollary 4.4 answer the
basic question as to when a full word can avoid a given pattern in the abelian sense.

Theorem 4.1. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let k = |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. Then the mean number of occurrences of p in a full word of length n over an
alphabet of m letters is

Ω̂n ∼
1

∏r
j=s+1(m

kj−1 − 1)

ns+1

(s + 1)!
.
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To illustrate Theorem 4.1, consider the pattern p = abacaba, where r = 3, s = 1, and
where k1 = 1, k2 = 2, and k3 = 4 denote, respectively, the number of occurrences of c,
b, and a in p. Substituting these variables, m = 12, and n = 100, we find that

Ω̂100 ≈ 0.26319 · · · .

Theorem 4.2. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let k = |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. Then the mean number of occurrences of p in the abelian sense in a word of
length n over an alphabet of m ≥ 4 letters is

Ω̂n ∼
ns+1

(s + 1)!

r

∏
j=s+1

[
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]

.

To illustrate Theorem 4.2, consider the pattern p = aba, where r = 2, s = 1, k1 = 1,
and k2 = 2. Substituting these variables, m = 12, and n = 100, and applying [30,
Theorem 4] we find that

Ω̂100 ≈
1002 · 1212/2(4π)−11/2

2
ζ

(
11
2

)
≈ 13778.87 · · · .

Corollary 4.3. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. If

n < (1 + o(1))

[
(s + 1)!

r

∏
j=s+1

(mkj−1 − 1)

] 1
s+1

,

there is a word of length n over an alphabet of m letters that avoids p. If p = Zi then

(4.1) L(m, Zi) ≥ (1 + o(1))

√√√√2
i−1

∏
j=1

(m2j−1 − 1).

Substituting for example m = 12 and i = 3, we find that

L(12, Z3) ≥ 194.92 · · · .

Corollary 4.4. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. For

n < (1 + o(1))

(s + 1)!
r

∏
j=s+1

[
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]−1


1

s+1

,
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there is a word of length n over an alphabet of m ≥ 4 letters that avoids p in the abelian sense.
If p = Zi then

Lab(m, Zi) ≥ (1 + o(1))

√√√√√2
i−1

∏
j=1

[
∞

∑
`=1

1
m2j` ∑

i1+···+im=`

(
`

i1, . . . , im

)2j]−1

.

These corollaries are rather crude. The first, Corollary 4.3 says that the maximum
length of words avoiding aa is at least m − 2, but m is the cardinality of the alpha-
bet. Nevertheless, it says that, as a variable is repeated, the maximum length of words
avoiding the associated pattern grows at least exponentially. For example, the max-
imum length of words avoiding the pattern ak is at least mk−1 − 2. The maximum
length of words avoiding the Zimin pattern Zi, as defined in Equation (2.1), is at least

−1 +
√

2 ∏i−1
j=1(m

2j−1 − 1).
First we prove the nonabelian word case, Theorem 4.1.

Proof. For the mean number of occurrences of a pattern p, calculations similar to those
employed for the number of occurrences of a word [17, p. 61] can be based on regular
specifications. Each occurrence of p consists of a concatenation of nonempty words
(represented by W \ {ε} = SEQ(A) \ {ε}) repeated k j times for the jth variable, sur-
rounded by arbitrary sequences of letters. Thus all the occurrences of p as a factor are
described by

Ô = SEQ(A)×
r

∏
j=1

[(W\{ε}) ◦ Z kj ]× SEQ(A),

so we get

Ô(z) =
1

(1−mz)2

r

∏
j=1

(
1

1−mzkj
− 1
)

=
mrzk

(1−mz)2+s

r

∏
j=s+1

1

1−mzkj
.(4.2)

We have a pole of order 2+ s at z = 1/m, and poles at the k j different k jth roots of 1/m
for k j ≥ 2 (which have modulus greater than 1/m). By Theorem 3.1, we know that for
any R > 1, there exist polynomials P1, Ps+1, . . . , Pr such that

[zn]Ô(z) = P1(n)mn +
r

∑
j=s+1

Pj(n)mn/kj + O(R−n),

where the degree of P1 is s + 1. For an asymptotic equivalent of [zn]Ô(z), only the pole
at z = 1/m needs to be considered because it is closest to the origin and corresponds
to the fastest exponential growth; it is the dominant singularity. We plug in z = 1/m in
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Equation (4.2) for the nonsingular portion to obtain the first-order asymptotics of the
OGF near z = 1/m:

Ô(z) ∼ mr−k

∏r
j=s+1(1−m1−kj)

1
(1−mz)2+s

=
1

∏r
j=s+1(m

kj−1 − 1)

1
(1−mz)2+s ,

which correspond to the first-order asymptotics of the associated sequence,

[zn]Ô(z) ∼ 1

∏r
j=s+1(m

kj−1 − 1)

(
n + s + 1

s + 1

)
mn

∼ 1

∏r
j=s+1(m

kj−1 − 1)

ns+1mn

(s + 1)!
.

Therefore, the mean number of occurrences of a pattern p in a word of length n over
an alphabet of m letters is

Ω̂n ∼
1

∏r
j=s+1(m

kj−1 − 1)

ns+1

(s + 1)!
.

�

Next we prove the abelian word case, Theorem 4.2.

Proof. Each occurrence of p consists of a concatenation of nonempty words repeated
k j times for the jth variable surrounded by arbitrary sequences of letters, with the
additional k j − 1 instances of each substituted word being allowed to permute their
letters. Thus all the occurrences of p as a factor in the abelian sense are described by

Ô = SEQ(A)×
r

∏
j=1

 ∑
w∈W\{ε}

|Per(w)|kj−1Z kj|w|

× SEQ(A),

where Per(w) denotes the set of distinct permutations of the word w. So we get

Ô(z) =
1

(1−mz)2

r

∏
j=1

(
∞

∑
`=1

zkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
)

=
mszs

(1−mz)2+s

r

∏
j=s+1

(
∞

∑
`=1

zkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
)

.

Since it is not obvious whether the generating function may be analytically continued
beyond its radius of convergence, we treat it as though it is lacunary, i.e. not analytically
continuable, and we use techniques from [16] to calculate asymptotics.
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Note that k j ≥ 2 for s + 1 ≤ j ≤ r and(
`

i1, . . . , im

)
< ∑

i1+···+im=`

(
`

i1, . . . , im

)
= m`

for ` ≥ 2. Applying [30, Theorem 4] and using our assumption that m ≥ 4, we find
that ∣∣∣∣∣ ∞

∑
`=1

zkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
∣∣∣∣∣ ≤ ∞

∑
`=1
|z|kj` ∑

i1+···+im=`

(
`

i1, . . . , im

)kj

≤
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj

=
∞

∑
`=1

∑
i1+···+im=`

[
( `

i1,...,im)

m`

]kj

≤
∞

∑
`=1

∑
i1+···+im=`

[
( `

i1,...,im)

m`

]2

=
∞

∑
`=1

1
m2` ∑

i1+···+im=`

(
`

i1, . . . , im

)2

≤
∞

∑
`=1

(1 + o(1))mm/2(4π`)(1−m)/2

∼ mm/2(4π)(1−m)/2ζ

(
m− 1

2

)
< ∞

so
∞

∑
`=1

zkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj

converges at all z in the closed disc |z| ≤ 1/m, and the radius of convergence is at least

1/m. In fact, ∑∞
`=1 z2` ∑i1+···+im=` (

`
i1,...,im)

2
has radius of convergence R = 1/m since, by

the Cauchy–Hadamard theorem, the radius of convergence satisfies

1
R

= lim sup
`→∞

[
∑

i1+···+im=`

(
`

i1, . . . , im

)2
] 1

2`

= lim sup
`→∞

[
m2`+m

2 (4π`)(1−m)/2
] 1

2`

= lim
`→∞

[
m1+ m

4` (4π`)
1−m

4`

]
= m.
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We may factor Ô(z) as Ô(z) = P(mz) ·Q(mz), where

P(z) =
1

(1− z)2+s

and

Q(z) = zs
r

∏
j=s+1

[
∞

∑
`=1

( z
m

)kj`

∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]

.

Note that Q(z) is analytic in |z| < 1 and converges at all points on the unit disc. Also
note that Q(z) is C∞-smooth on the unit circle; differentiating the power series any
number of times does not make it diverge. In particular, Q(z) is C2+s-smooth on the
unit circle.

Note that P(z) is of global order −2− s and is its own log-power expansion of type
Ot relative to W = {1}, where t = ∞. Since t = ∞ > u0 = b((2+ s)+ (−2− s))/2c ≥ 0,
the conditions of [16, Theorem 1] hold. Letting c0 = b((2 + s)− (−2− s))/2c = 2 + s,
we find that

[zn](P(z) ·Q(z)) = [zn](P(z) · H(z)) + o(1),

where H(z) is the Hermite interpolation polynomial such that all its derivatives of
order 0, . . . , 1 + s coincide with those of Q(z) at w = 1. Note that this implies that

H(1) =
r

∏
j=s+1

[
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]

.

Scaling by a factor of m, since the singularity occurs at a radius 1/m, we get

[zn]Ô(z) = [zn](P(mz) · H(mz)) + o(1).

Since H(z) is a polynomial, the only singularity of P(mz) · H(mz) is z = 1/m, so it
dominates, and by Theorem 3.1,

[zn]Ô(z) ∼
(

n + s + 1
s + 1

)
mn

r

∏
j=s+1

[
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]

∼ ns+1mn

(s + 1)!

r

∏
j=s+1

[
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]

.

Therefore, the mean number of occurrences of a pattern p in the abelian sense in a
word of length n over an alphabet of m ≥ 4 letters is

Ω̂n ∼
ns+1

(s + 1)!

r

∏
j=s+1

[
∞

∑
`=1

1

mkj` ∑
i1+···+im=`

(
`

i1, . . . , im

)kj
]

.

�
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When Ω̂n < 1, we may apply Theorem 3.2, so the corollaries follow.
According to [25, p. 101],

L(m, Zi) ≤ mL(m,Zi−1)[L(m, Zi−1) + 1] + L(m, Zi−1)

and L(m, Z2) = 2m + 1. Through brute force, we can establish a crude upper bound
for L(m, Zi), which we write using Knuth’s up-arrow notation.

Theorem 4.5. For m ≥ 2 and i ≥ 2,

(4.3) L(m, Zi) < m ↑↑ (2i− 1).

Proof. Since m ≥ 2, L(m, Z2) = 2m + 1 < mmm
= m ↑↑ 3 establishes our base case. For

the inductive step, assume that for some i ≥ 2,

L(m, Zi) < m ↑↑ (2i− 1).

As stated earlier,

L(m, Zi+1) ≤ mL(m,Zi)[L(m, Zi) + 1] + L(m, Zi),

so

L(m, Zi+1) < [mL(m,Zi) + 1][L(m, Zi) + 1]

< [mm↑↑(2i−1) + 1][m ↑↑ (2i− 1) + 1]

= [m ↑↑ (2i) + 1][m ↑↑ (2i− 1) + 1]

< [m ↑↑ (2i) + 1][m ↑↑ (2i)]

< [m ↑↑ (2i)]3

= m3m↑↑(2i−1)

< mm↑↑(2i)

= m ↑↑ (2i + 1),

and our induction is complete. �

Our derived upper bound for L(m, Zi) in Equation (4.3), which uses tetration, is
vastly greater than our derived lower bound for L(m, Zi) in Equation (4.1), which uses
repeated squaring. Nevertheless, we have established concrete upper and lower bounds
for L(m, Zi). The upper bound for L(m, Zi) in Theorem 4.5 also applies to Lab(m, Zi).

5. Mean pattern occurrence: the partial word case

Next, we investigate the case of patterns in partial words. As in the case of full words,
we calculate the mean number of pattern occurrences. First, we take the average over
all partial words of a given length. Then we average over all strictly partial words of a
given length, and finally, we take the average over all partial words of a given length
with a given hole density. The last of these statistics, gotten through the calculation of
bivariate asymptotics, allows us to prove a lower bound on partial Ramsey lengths.
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5.1. Mean over all partial words of a given length. The following lemma, which can
be proved by induction on k, will help us compare the distances of poles of the gener-
ating function from the origin and establish one of them as the dominant singularity.

Lemma 1. If m ≥ 2 and k ≥ 2, then m2k −m + 1 < (m + 1)k.

Theorem 5.1 together with Corollary 5.2 answer the basic question as to when a
partial word can avoid a given pattern.

Theorem 5.1. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let k = |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. Then the mean number of occurrences of p in a partial word of length n over
an alphabet of m letters is

Ω̂n ∼
ns+1

(s + 1)!

r

∏
j=s+1

m2kj −m + 1

(m + 1)kj − (m2kj −m + 1)
.

Proof. For the mean number of occurrences of a pattern p in a partial word of length
n, calculations similar to those employed for the number of occurrences of a pattern
p in a full word of length n can be based on regular specifications. Each occurrence
of p consists of a concatenation of nonempty full words repeated k j times for the jth
variable surrounded by arbitrary sequences of letters and hole characters, with the
option of having some letters in the substituted words be replaced by �’s. When a
letter in a word is replaced in every instance by �, that letter practically no longer
exists, and we treat it like �. Thus all the occurrences of p as a factor are described by

Ô = SEQ(A+ {�})×
r

∏
j=1

SEQ({�kj}+A ◦ [(Z + {�})kj\{�kj}])\{ε} × SEQ(A+ {�}),

so we get

Ô(z) =
1

[1− (m + 1)z]2
r

∏
j=1

(
1

1− zkj −m(2kj − 1)zkj
− 1

)

=
(m + 1)szk

[1− (m + 1)z]2+s

r

∏
j=s+1

m2kj −m + 1

1− (m2kj −m + 1)zkj
.

We have a pole of order 2 + s at z = 1/(m + 1), and poles at the k j different k jth roots
of 1/(m2kj −m + 1) for k j ≥ 2. Those poles have modulus greater than 1/(m + 1) by
Lemma 1. The singularity at z = 1/(m+ 1) dominates because it is closest to the origin,
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so by Theorem 3.1,

Ô(z) ∼ (m + 1)s−k

[1− (m + 1)z]2+s

r

∏
j=s+1

m2kj −m + 1

1− (m2kj −m + 1)/(m + 1)kj

=
1

[1− (m + 1)z]2+s

r

∏
j=s+1

m2kj −m + 1

(m + 1)kj − (m2kj −m + 1)
.

Taking the coefficient of zn in the Taylor expansion, we get

[zn]Ô(z) ∼
(

n + s + 1
s + 1

)
(m + 1)n

r

∏
j=s+1

m2kj −m + 1

(m + 1)kj − (m2kj −m + 1)

∼ ns+1(m + 1)n

(s + 1)!

r

∏
j=s+1

m2kj −m + 1

(m + 1)kj − (m2kj −m + 1)
.

Therefore, the mean number of occurrences of a pattern p in a partial word of length n
over an alphabet of m letters is

Ω̂n ∼
ns+1

(s + 1)!

r

∏
j=s+1

m2kj −m + 1

(m + 1)kj − (m2kj −m + 1)
.

�

To illustrate Theorem 5.1, consider the pattern p = abacaba, where r = 3, s = 1,
k1 = 1, k2 = 2, and k3 = 4. Substituting these variables, m = 12, and n = 100, we find
that

Ω̂100 ≈ 8.9384 · · · .

When Ω̂n < 1, we may apply Theorem 3.2, so we get

Corollary 5.2. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let k = |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. If

n < (1 + o(1))

[
(s + 1)!

r

∏
j=s+1

(
(m + 1)kj

m2kj −m + 1
− 1

)] 1
s+1

,

there is a partial word of length n over an alphabet of m letters that avoids p.

Remark 1. When a partial word avoids a pattern, all of its completions also do, so the above
results also apply to the case of strictly partial words of a given length. We get the same asymp-
totics because the subtracted term has strictly lower order asymoptotically than the dominant
first-order term.
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5.2. Mean over all partial words of a given length with a given hole density. For all
terms and notations not defined here, we refer the reader to the book of Pemantle and
Wilson [28, pp. 120, 127, 135, 143–145, 154, 174, 177, 192, 198, 336, 341].

Lemma 2 will help us compare the distances of poles of the bivariate version of
the generating function from the origin and establish one of them as the dominant
singularity.

Lemma 2. Let H1 = 1− (m + u)z, and more generally let Hj = 1− [m(1 + u)j − muj +

uj]zj for integers j ≥ 2. Let B1 be the component of R2\amoeba(H1) containing a ray
(−∞, b] · (1, 1), and more generally let Bj be the component of R2\amoeba(Hj) containing
a ray (−∞, b] · (1, 1) for integers j ≥ 2. Then

∂B1 = {(− log(m + u), log u) : u ∈ (0, ∞)},

∂Bj =

{(
−1

j
log[m(1 + u)j − (m− 1)uj], log u

)
: u ∈ (0, ∞)

}
for j ≥ 2, and B1 ⊂ Bj for all j ≥ 2.

Proof. First, note that

amoeba(H1) = {(− log |m + u|, log |u|) : u ∈ C}

and

amoeba(Hj) =

{(
−1

j
log |m(1 + u)j − (m− 1)uj|, log |u|

)
: u ∈ C

}
for integers j ≥ 2. Since the polynomial m + u has all positive coefficients,

log |m + u| ≤ log(m + |u|)

and
∂B1 = {(− log(m + u), log u) : u ∈ (0, ∞)}.

More generally, the polynomial m(1 + u)j − (m − 1)uj has all positive coefficients, so
log |m(1 + u)j − (m− 1)uj| ≤ log[m(1 + |u|)j − (m− 1)|u|j] and

∂Bj =

{(
−1

j
log[m(1 + u)j − (m− 1)uj], log u

)
: u ∈ (0, ∞)

}
for j ≥ 2. For any parameter u ∈ (0, ∞), the corresponding points on ∂B1 and ∂Bj lie
on the same horizontal line. However, the power means inequality gives us

j
√

(m+u)j+(m−1)uj

m > (m+u)+(m−1)u
m = 1 + u

which implies

− log(m + u) < −1
j

log[m(1 + u)j − (m− 1)uj],

so ∂B1 lies strictly to the left of ∂Bj and B1 ⊂ Bj for all j ≥ 2. �
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We now calculate the mean number of occurrences of a pattern in a partial word with
a given length and hole density. This requires the construction of a bivariate generating
function, where a second variable, u, marks the number of �’s in a partial word.

Theorem 5.3. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let k = |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. Then the mean number of occurrences of p in a partial word of length n with
hole density d ∈ Q∩ (0, 1) over an alphabet of m letters is

Ω̂n,d ∼
ns+1

(s + 1)!

r

∏
j=s+1

[1 + d(m− 1)]kj −
(

1− 1
m

)
(md)kj

mkj−1 − [1 + d(m− 1)]kj +
(

1− 1
m

)
(md)kj

.

Proof. Marking each � with the variable u,

Ô = SEQ(A+ {�})×
r

∏
j=1

SEQ({�kj}+A ◦ [(Z + {�})kj\{�kj}])\{ε} × SEQ(A+ {�}),

becomes

Ô(z, u) =
1

(1−mz− uz)2

r

∏
j=1

(
1

1− ukj zkj −m[(1 + u)kj − ukj ]zkj
− 1

)

=
(m + u)szk

[1− (m + u)z]2+s

r

∏
j=s+1

m(1 + u)kj −mukj + ukj

1− [m(1 + u)kj −mukj + ukj ]zkj
.

For convenience, write G = (m+u)szk∏r
j=s+1[m(1+u)kj−mukj +ukj ] and H = H2+s

1 ∏r
j=s+1Hkj ,

where H1 = 1− (m + u)z and Hj = 1− [m(1 + u)j −muj + uj]zj, so that Ô(z, u) = G
H .

Note that Ô = G
H is singular where H is zero, i.e. on the singular variety

V := VH =

{
(z, u) ∈ C2 : H2+s

1

r

∏
j=s+1

Hkj = 0

}
= V1 ∪

 r⋃
j=s+1

Vkj


where we define V1 := {(z, u) ∈ C2 : 1 − (m + u)z = 0} and Vj := {(z, u) ∈ C2 :
1 − [m(1 + u)j − muj + uj]zj = 0}. Taking the log-modulus gives us the associated
amoebas, amoeba(H) := amoeba(H1) ∪

(⋃r
j=s+1 amoeba(Hkj)

)
, where

amoeba(H1) = {(− log |m + u|, log |u|) : u ∈ C}

and

amoeba(Hj) =

{(
−1

j
log |m(1 + u)j − (m− 1)uj|, log |u|

)
: u ∈ C

}
.

Let B be the component of R2\amoeba(H) containing a ray (−∞, b] · (1, 1). By Lemma
2 we know that B = B1, where B1 is the component of R2\amoeba(H1) containing a ray
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(−∞, b] · (1, 1). The strata are

S1 = V1\
r⋃

j=s+1

Vkj ,

Skj = Vkj\
⋃

ki 6=kj

Vki ,

and intersections of Vki and Vkj . By Lemma 2, only the critical points of S1 may have
log-moduli on

∂B = ∂B1 = {(− log(m + u), log u) : u ∈ (0, ∞)}.

The critical point on S1 is described by the critical point equations:

1− (m + u)z = 0

−hz(m + u) = −nuz.

The solution to the above system of equations is (z∗, u∗) =
(

n−h
mn , hm

n−h

)
, and its log-

modulus lies on ∂B. Since xmin = Re log
(

n−h
mn , hm

n−h

)
is the unique minimizer in ∂B for

h = hr̂, i.e. xmin minimizes −r̂ · x, and the singleton set containing the critical point
E =

{(
n−h
mn , hm

n−h

)}
⊆ T(xmin) is a finite nonempty set of quadratically nondegenerate

smooth points, the intersection cycle

σ =

[
∑

z∈W
C(z)

]

is the sum of quasi-local cycles C(z) for z ∈ E, where C(z) is a homology generator of

(Vh(xmin)+ε,Vh(xmin)−ε),

for example the descending submanifold.
We get asymptotics, so [znuh]Ô(z, u)

∼(2π)
1−2

2

(
−h

s + 1

)
(detH1)

−1/2 ·

[
G
/

∏r
j=s+1 Hkj

]
(z,u)=( n−h

mn , hm
n−h)(

hm
n−h

)s+2 (
−n−h

mn

)s+2 h
1−2

2

(
n− h
mn

)−n ( hm
n− h

)−h

∼ 1√
2π

(−h)s+1

(s + 1)!
−h√

n(n− h)
·

[
G
/

∏r
j=s+1 Hkj

]
(z,u)=( n−h

mn , hm
n−h)(

− h
n

)s+2
mn−h
√

h

(
1− h

n

)h−n (n
h

)h
,
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where

detH1 =
Q

(−uH1u)3

=
−u2z2z(−m− u)− u(−z)z2(−m− u)2 − z2u2(−2)(−m− u)(−z)(−1)

[(−u)(−z)]3

=
n(n− h)

h2 at u =
hm

n− h
,

and where
[

G
/

∏r
j=s+1 Hkj

]
(z,u)=( n−h

mn , hm
n−h)

=

[(
mn

n− h

)s (n− h
mn

)k
]
·

r

∏
j=s+1

m
(

n−h+hm
n−h

)kj − (m− 1)
(

hm
n−h

)kj

1−
[

m
(

n−h+hm
n−h

)kj − (m− 1)
(

hm
n−h

)kj
] (

n−h
mn

)kj

=
r

∏
j=s+1

m(n− h + hm)kj − (m− 1)(hm)kj

(mn)kj −m(n− h + hm)kj + (m− 1)(hm)kj
.

Substituting the latter quantity, we get

[znuh]Ô(z, u) ∼ 1√
2π

(−h)s+1

(s + 1)!
−h√

n(n− h)

(
−n

h

)s+2 mn−h
√

h

(
1− h

n

)h−n nh

hh ·

r

∏
j=s+1

m(n− h + hm)kj − (m− 1)(hm)kj

(mn)kj −m(n− h + hm)kj + (m− 1)(hm)kj

=
mn−hns+1(1− d)n(d−1)− 1

2

(s + 1)!
√

2πnd dnd

r

∏
j=s+1

[1 + d(m− 1)]kj − (1− 1/m)(md)kj

mkj−1 − [1 + d(m− 1)]kj + (1− 1/m)(md)kj
,

where we let d = h/n denote the density of holes.
Since the total number of partial words of length n with h holes over an alphabet of

m letters is, by Stirling’s approximation,(
n
h

)
mn−h ∼ mn−h

(n
h

)h
(

n
n− h

)n−h
√

2πn
(2πh)2π(n− h)

=
mn−h√

2πnd(1− d) [dd(1− d)1−d]n
,

we find that the mean number of occurrences of p in a partial word of length n with
hole density d over an alphabet of m letters is

Ω̂n,d ∼
ns+1

(s + 1)!

r

∏
j=s+1

[1 + d(m− 1)]kj −
(

1− 1
m

)
(md)kj

mkj−1 − [1 + d(m− 1)]kj +
(

1− 1
m

)
(md)kj

.
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�

To illustrate Theorem 5.3, consider the pattern p = abacaba, where r = 3, s = 1,
k1 = 1, k2 = 2, and k3 = 4. Substituting these variables, m = 12, n = 100, and d = 1/10
we find that

Ω̂100,1/10 ≈ 17.788 · · · .

When Ω̂n,d < 1, we may apply Theorem 3.2, so in that case we obtain the following
corollary.

Corollary 5.4. Suppose that a pattern p uses r distinct variables, where the jth variable occurs
k j ≥ 1 times. Without loss of generality, let k = |p| = k1 + · · ·+ kr and 1 = k1 = · · · = ks <
ks+1 ≤ · · · ≤ kr. If

n < (1 + o(1))

(s + 1)!
r

∏
j=s+1

 mkj−1

[1 + d(m− 1)]kj −
(

1− 1
m

)
(md)kj

− 1

 1
s+1

there is a partial word of length n with hole density d over an alphabet of m letters that avoids
p.

The upper bound for L(m, Zi) in Theorem 4.5 also applies to Ld(m, Zi). For a lower
bound, we get the following.

Corollary 5.5.

Ld(m, Zi) ≥ (1 + o(1))

√√√√√2
i−1

∏
j=1

 m2j−1

[1 + d(m− 1)]2j −
(

1− 1
m

)
(md)2j

− 1

.

Substituting for example m = 12, d = 1/10, and i = 3, we find that

L1/10(12, Z3) ≥ 23.709 · · · .

6. Conclusion and open problems

Using techniques from analytic combinatorics, we have calculated asymptotic mean
pattern occurrence and used these statistics in conjunction with the probabilistic method
to establish new results about Ramsey theoretic pattern avoidance in the abelian full
word case and the nonabelian partial word case. We have established, in particular,
lower bounds for Ramsey lengths.

However, there may be more possible uses of these data in applications such as
cryptography and musicology. Cryptanalysts may compare the pattern occurrence
statistics of possible ciphertexts to those of random noise to detect the existence of
hidden messages; see the definitions of semantic security and pseudorandom generator
in [21, pp. 67, 70]. Musicologists may compare the pattern occurrence statistics of
different musical compositions to further their understanding of musical forms; for
previous work connecting music theory and theoretical computer science see [24].
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We propose the following open problems.

Problem 1. Can you adapt the techniques appearing in this paper to the following two cases,
which we have not considered, and get similar results?

• When can a partial word avoid a given pattern in the abelian sense?
• When can a full necklace avoid a given pattern?

Problem 2. Can you find better lower and upper bounds for the Ramsey lengths L(m, p),
Ld(m, p), and Lab(m, p) than the ones appearing in this paper?
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