A q-SYMMETRIC ALGORITHM AND ITS APPLICATIONS TO SOME COMBINATORIAL SEQUENCES

ISTVÁN MEZŐ AND JOSÉ L. RAMÍREZ

Abstract

Аbstract. In this paper, we define the q-analogue of the so-called symmetric infinite matrix algorithm. We find an explicit formula for entries in the associated matrix and also for the generating function of the k-th row of this matrix for each fixed k. This helps us to derive analytic and number theoretic identities with respect to the q-harmonic numbers and q-hyperharmonic numbers of Mansour and Shattuck.

1. Introduction

The Euler-Seidel algorithm is a useful method to study some recurrence relations and combinatorial sequences such as harmonic numbers, hyperharmonic numbers, Lucas numbers and polynomials, hyper-Fibonacci numbers, Bernoulli, Euler and Genocchi polynomials, among others. For more details, see for example [7, 8, 10, 11, 12, 15, 16, 19].

Dil and Mező [9] introduced a new method called the symmetric algorithm, which is an analogue of the Euler-Seidel method. This new method takes two initial sequences as an input, and the output is an infinite matrix. The elements of this matrix are obtained by the recurrence relation

$$
\begin{aligned}
& a_{n}^{0}=a_{n}, \quad a_{0}^{n}=a^{n}, \quad(n \geqslant 0) \\
& a_{n}^{k}=a_{n-1}^{k}+a_{n}^{k-1}, \quad(n, k \geqslant 1),
\end{aligned}
$$

[^0]that is, the elements are given as the following scheme shows:
\[

\left($$
\begin{array}{cccccccc}
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & a_{n}^{k-1} & \cdot & \cdot & \cdot \\
& & & & \downarrow & & & \\
\cdot & \cdot & \cdot & a_{n-1}^{k} & \rightarrow & a_{n}^{k} & \cdot & \cdot \\
\cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot \\
. & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot & \cdot
\end{array}
$$\right)
\]

Recall that the Euler-Seidel matrix [10] is defined by

$$
\begin{aligned}
& a_{n}^{0}=a_{n}, \quad(n \geqslant 0) \\
& a_{n}^{k}=a_{n}^{k-1}+a_{n+1}^{k-1}, \quad(n \geqslant 0, k \geqslant 1)
\end{aligned}
$$

Clarke et al. [5] introduced a q-analogue of the Euler-Seidel matrix and with this they studied the q-analogue of the results of Dumont and Randrianarivory about the combinatorial interpretations of the coefficients of the Euler-Seidel matrix associated to n ! [11]. The q-analogue of the Euler-Seidel matrix is defined by the following recurrences:

$$
\begin{aligned}
& a_{n}^{0}(x, q)=a_{n}(x, q), \quad a_{0}^{n}(x, q)=a^{n}(x, q), \quad(n \geqslant 0) \\
& a_{n}^{k}(x, q)=x q^{n} a_{n}^{k-1}+a_{n+1}^{k-1}(x, q), \quad(n, k \geqslant 1) .
\end{aligned}
$$

This algorithm was recently generalized by Cetin-Firengiz and Tuglu [3].
Recently, Ramírez and Shattuck [17] introduced the following q-analogue of the symmetric algorithm:

$$
\begin{aligned}
& a_{n}^{0}(u, v, q)=a_{n}(x, q), \quad a_{0}^{n}(u, v, q)=a^{n}(x, q), \quad(n \geqslant 0) \\
& a_{n}^{k}(u, v, q)=v a_{n-1}^{k}(u, v, q)+u q^{n+2 k-1} a_{n}^{k-1}(u, v, q), \quad(n, k \geqslant 1)
\end{aligned}
$$

In this paper our goal is to introduce a different q-analogue of the symmetric algorithm. Then we use this new method to study the q-hyperharmonic numbers and q-harmonic numbers. Moreover, we give several analytic and number theoretic identities.

2. A q-analogue of the Symmetric Infinite Matrix

Definition 2.1. Let $\left(a_{n}(x, q)\right)_{n \in \mathbb{N}}\left(a^{n}(x, q)\right)_{n \in \mathbb{N}}$ be two real sequences with $a_{0}(x, q)=a^{0}(x, q)=a_{0}^{0}(x, q)$. We define the elements of the q-symmetric infinite matrix associated with these sequences via the following recursive formulae:

$$
\begin{align*}
& a_{n}^{0}(x, q)=a_{n}(x, q), \quad a_{0}^{n}(x, q)=a^{n}(x, q), \quad(n \geqslant 0) \tag{1}\\
& a_{n}^{k}(x, q)=a_{n-1}^{k}(x, q)+x q^{n} a_{n}^{k-1}(x, q), \quad(n, k \geqslant 1) . \tag{2}
\end{align*}
$$

Note that if $x=1=q$ we obtain the matrix of Dil and Mező [9].
We need some notation from q-theory. The q-binomial coefficient is defined by

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]:=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}},
$$

where

$$
(a ; q)_{n}:=\prod_{j=0}^{n-1}\left(1-a q^{j}\right)
$$

stands for the q-Pochhammer symbol.
Another way to write the q-binomial is

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]=\frac{[n]_{q}!}{[k]_{q}![n-k]_{q}!}
$$

with $[n]_{q}=1+q+\cdots+q^{n-1}$ and $[n]_{q}!=[1]_{q}[2]_{q} \cdots[n]_{q}$.
With this notation, we can find an expression for an arbitrary entry of the q-symmetric infinite matrix.

Theorem 2.2. Let $n, k \geq 0$, not both zero. Then the entries of the q-symmetric infinite matrix are given by

$$
a_{n}^{k}(x, q)=\sum_{i=1}^{k}\left[\begin{array}{c}
n+k-i-1 \\
n-1
\end{array}\right] a_{0}^{i}(x, q)(q x)^{k-i}+x^{k} \sum_{s=1}^{n}\left[\begin{array}{c}
n+k-s-1 \\
k-1
\end{array}\right] a_{s}^{0}(x, q) q^{k s} .
$$

Proof. We proceed by induction on $s=n+k$. The statement clearly holds when $n=0$ or $k=0$ (in particular, when $s=1$). Suppose that the result holds for all $i \leq s$. We are going to prove it for $s+1$, where $n, k \geq 1$. We have two cases; if $s+1=(n+1)+k$, then

$$
\begin{aligned}
& a_{n+1}^{k}(x, q)=a_{n}^{k}(x, q)+x q^{n+1} a_{n+1}^{k-1}(x, q) \\
& =\sum_{i=1}^{k}\left[\begin{array}{c}
n+k-i-1 \\
n-1
\end{array}\right] a_{0}^{i}(x, q)(q x)^{k-i}+x^{k} \sum_{s=1}^{n}\left[\begin{array}{c}
n+k-s-1 \\
k-1
\end{array}\right] a_{s}^{0}(x, q) q^{k s} \\
& +x q^{n+1}\left(\sum_{s=1}^{k-1}\left[\begin{array}{c}
n+k-i-1 \\
n
\end{array}\right] a_{0}^{i}(x, q)(q x)^{k-i-1}\right. \\
& \left.+x^{k-1} \sum_{s=1}^{n+1}\left[\begin{array}{c}
n+k-s-1 \\
k-2
\end{array}\right] a_{s}^{0}(x, q) q^{(k-1) s}\right) \\
& =\sum_{i=1}^{k-1}\left(\left[\begin{array}{c}
n+k-i-1 \\
n-1
\end{array}\right]+q^{n}\left[\begin{array}{c}
n+k-i-1 \\
n
\end{array}\right]\right) a_{0}^{i}(x, q)(q x)^{k-i}+a_{0}^{k}(x, q) \\
& +x^{k} \sum_{s=1}^{n}\left(\left[\begin{array}{c}
n+k-s-1 \\
k-1
\end{array}\right]+q^{n-s+1}\left[\begin{array}{c}
n+k-s-1 \\
k-2
\end{array}\right]\right) a_{s}^{0}(x, q) q^{k s}+x^{k} a_{n+1}^{0}(x, q) q^{(n+1) k}
\end{aligned}
$$

From the defining recursions

$$
\left[\begin{array}{c}
n \\
j
\end{array}\right]=\left[\begin{array}{c}
n-1 \\
j-1
\end{array}\right]+q^{j}\left[\begin{array}{c}
n-1 \\
j
\end{array}\right], \quad \text { and } \quad\left[\begin{array}{c}
n \\
j
\end{array}\right]=q^{n-j}\left[\begin{array}{c}
n-1 \\
j-1
\end{array}\right]+\left[\begin{array}{c}
n-1 \\
j
\end{array}\right]
$$

we get that

$$
\begin{aligned}
& a_{n+1}^{k}(x, q)=\sum_{i=1}^{k-1}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] a_{0}^{i}(x, q)(q x)^{k-i}+a_{0}^{k}(x, q) \\
&+x^{k} \sum_{s=1}^{n}\left[\begin{array}{c}
n+k-s \\
k-1
\end{array}\right] a_{s}^{0}(x, q) q^{k s}+x^{k} a_{n+1}^{0}(x, q) q^{(n+1) k} \\
& \quad=\sum_{i=1}^{k}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] a_{0}^{i}(x, q)(q x)^{k-i}+x^{k} \sum_{s=1}^{n+1}\left[\begin{array}{c}
n+k-s \\
k-1
\end{array}\right] a_{s}^{0}(x, q) q^{k s}
\end{aligned}
$$

In the other case when $s+1=n+(k+1)$, the result similarly holds.

In the theory of infinite symmetric matrices, the form of the generating function of the rows has crucial importance.

Now we introduce the following generating function:

$$
a(z)=\sum_{n=1}^{\infty} a_{n}^{0}(x, q) z^{n}
$$

That is, $a(z)$ is the generating function of the input sequence a_{n} (initial row).

Theorem 2.3. Let $\left(a_{n}(x, q)\right)_{n \in \mathbb{N}}$ and $\left(a^{n}(x, q)\right)_{n \in \mathbb{N}}$ be two initial sequences. Then the generating functions of the k th row of the q-symmetric infinite matrix is

$$
A^{k}(z)=\sum_{n=1}^{\infty} a_{n}^{k}(x, q) z^{n}=\frac{x^{k} a\left(q^{k} z\right)}{(z ; q)_{k}}+z \sum_{i=1}^{k} \frac{a_{0}^{i}(x, q)(q x)^{k-i}}{(z ; q)_{k-i+1}}
$$

Proof. From Theorem 2.2 we get that

$$
\begin{aligned}
\sum_{n=0}^{\infty} a_{n+1}^{k+1}(x, q) z^{n} & =\sum_{n=0}^{\infty}\left(\sum_{i=1}^{k+1}\left[\begin{array}{c}
n+k-i+1 \\
n
\end{array}\right] a_{0}^{i}(x, q)(q x)^{k+1-i}\right. \\
& \left.+x^{k+1} \sum_{s=1}^{n+1}\left[\begin{array}{c}
n+k-s+1 \\
k
\end{array}\right] a_{s}^{0}(x, q) q^{(k+1) s}\right) z^{n} \\
& =a_{0}^{1}(x, q)(q x)^{k} \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right] z^{n}+\sum_{n=0}^{\infty} \sum_{i=1}^{k}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] a_{0}^{i+1}(x, q)(q x)^{k-i} z^{n} \\
& +x^{k+1} \sum_{n=0}^{\infty} \sum_{s=0}^{n}\left[\begin{array}{c}
n+k-s \\
k
\end{array}\right] a_{s+1}^{0}(x, q) q^{(k+1)(s+1)} z^{n} \\
& =a_{0}^{1}(x, q)(q x)^{k} \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right] z^{n}+\sum_{i=1}^{k} a_{0}^{i+1}(x, q)(q x)^{k-i} \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] z^{n} \\
& +x^{k+1} \sum_{n=0}^{\infty} a_{n+1}^{0}(x, q) q^{(k+1)(n+1)} z^{n} \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
k
\end{array}\right] z^{n} \\
& =\sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right] z^{n}\left(a_{0}^{1}(x, q)(q x)^{k}+x^{k+1} \sum_{n=0}^{\infty} a_{n+1}^{0}(x, q) q^{(k+1)(n+1)} z^{n}\right) \\
& +\sum_{i=1}^{k} a_{0}^{i+1}(x, q)(q x)^{k-i} \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] z^{n} .
\end{aligned}
$$

Then

$$
\begin{aligned}
\sum_{n=1}^{\infty} a_{n}^{k+1}(x, q) z^{n} & =\sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right] z^{n}\left(a_{0}^{1}(x, q)(q x)^{k} z+x^{k+1} \sum_{n=0}^{\infty} a_{n+1}^{0}(x, q)\left(q^{k+1} z\right)^{n+1}\right) \\
& +\sum_{i=1}^{k} a_{0}^{i+1}(x, q)(q x)^{k-i} z \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] z^{n} \\
& =\sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right] z^{n}\left(a_{0}^{1}(x, q)(q x)^{k} z+x^{k+1} a\left(q^{k+1} z\right)\right) \\
& +\sum_{i=1}^{k} a_{0}^{i+1}(x, q)(q x)^{k-i} z \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] z^{n} \\
& =x^{k+1} a\left(q^{k+1} z\right) \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k \\
n
\end{array}\right] z^{n}+\sum_{i=0}^{k} a_{0}^{i+1}(x, q)(q x)^{k-i} z \sum_{n=0}^{\infty}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] z^{n} \\
& =x^{k+1} a\left(q^{k+1} z\right) \frac{1}{(z ; q)_{k+1}}+\sum_{i=0}^{k} a_{0}^{i+1}(x, q)(q x)^{k-i} z \frac{1}{(z ; q)_{k-i+1}} .
\end{aligned}
$$

3. Applications

3.1. q-hyperharmonic numbers. Mansour and Shattuck [14] introduced the q-hyperharmonic numbers:

$$
\begin{aligned}
& H_{q}(n, 0)=\frac{1}{q[n]_{q}} \\
& H_{q}(n, r)=\sum_{i=1}^{n} q^{i} H_{q}(i, r-1)
\end{aligned}
$$

The hyperharmonic numbers, as referred to by Conway and Guy [6], correspond to the $q=1$ case of $H_{q}(n, r)$ and have been an object of previous study (see, e.g., [2]).

In [14], the authors gave a combinatorial proof of the following result. Here it will be proven by the q-symmetric algorithm (1).

Theorem 3.1. If $n \geq 1, k \geq 1$, then

$$
H_{q}(n, r)=\sum_{j=1}^{n}\left[\begin{array}{c}
n+r-j-1 \tag{3}\\
r-1
\end{array}\right] \frac{q^{r j-1}}{[j]_{q}} .
$$

Proof. Let $a_{n}^{0}(x, q)=\frac{1}{q[n+1]_{q}}$ and $a_{0}^{n}(x, q)=q^{n-1}$ be given for $n \geq 1$. From the q symmetric algorithm (1) with $x=q$, we obtain the following infinite matrix:

$$
\left(\begin{array}{ccccc}
H_{q}(1,0) & H_{q}(2,0) & H_{q}(3,0) & H_{q}(4,0) & \cdots \\
H_{q}(1,1) & H_{q}(2,1) & H_{q}(3,1) & H_{q}(4,1) & \ldots \\
H_{q}(1,2) & H_{q}(2,2) & H_{q}(3,2) & H_{q}(4,2) & \cdots \\
\vdots & \vdots & \vdots & \vdots & \ddots
\end{array}\right)
$$

Then from Theorem 2.2 we get:

$$
\begin{aligned}
a_{n+1}^{k+1}(x, q) & =\sum_{i=1}^{k+1}\left[\begin{array}{c}
n+k-i+1 \\
n
\end{array}\right] q^{2 k-i+1}+q^{k+1} \sum_{s=1}^{n+1}\left[\begin{array}{c}
n+k-s+1 \\
k
\end{array}\right] \frac{q^{(k+1) s}}{q[s+1]_{q}} \\
& =q^{k}\left(\sum_{i=0}^{k}\left[\begin{array}{c}
n+k-i \\
n
\end{array}\right] q^{k-i}+\sum_{s=0}^{n}\left[\begin{array}{c}
n+k-s \\
k
\end{array}\right] \frac{q^{(k+1)(s+1)}}{[s+2]_{q}}\right) \\
& =q^{k}\left(\sum_{l=0}^{k}\left[\begin{array}{c}
n+l \\
n
\end{array}\right] q^{l}+\sum_{h=0}^{n}\left[\begin{array}{c}
k+h \\
k
\end{array}\right] \frac{q^{(k+1)(n-h+1)}}{[n-h+2]_{q}}\right),
\end{aligned}
$$

where $l=k-i$ and $h=n-s$. From the q-binomial identity (see, e.g., Theorem 3.4 of [1])

$$
\left[\begin{array}{c}
n+m+1 \tag{4}\\
m+1
\end{array}\right]=\sum_{j=0}^{n}\left[\begin{array}{c}
m+j \\
m
\end{array}\right] q^{j}
$$

we get

$$
\begin{align*}
& a_{n+1}^{k+1}(x, q)=q^{k}\left(\left[\begin{array}{c}
k+n+1 \\
n+1
\end{array}\right]+\sum_{h=0}^{n}\left[\begin{array}{c}
k+h \\
k
\end{array}\right] \frac{q^{(k+1)(n-h+1)}}{[n-h+2]_{q}}\right) \tag{5}\\
& =q^{k} \sum_{h=0}^{n+1}\left[\begin{array}{c}
k+h \\
k
\end{array}\right] \frac{q^{(k+1)(n-h+1)}}{[n-h+2]_{q}} .
\end{align*}
$$

Therefore

$$
\begin{align*}
a_{n-1}^{k}(x, q)=H_{q}(n, k) & =q^{k-1} \sum_{h=0}^{n-1}\left[\begin{array}{c}
k+h-1 \\
k-1
\end{array}\right] \frac{q^{k(n-h-1)}}{[n-h]_{q}} \tag{6}\\
& =q^{k-1} \sum_{s=1}^{n}\left[\begin{array}{c}
k+n-s-1 \\
k-1
\end{array}\right] \frac{q^{k(s-1)}}{[s]_{q}}=\sum_{s=1}^{n}\left[\begin{array}{c}
k+n-s-1 \\
k-1
\end{array}\right] \frac{q^{k s-1}}{[s]_{q}} .
\end{align*}
$$

This finalizes the proof.
The following result has already been proven by Mansour and Shattuck in [14] by a different method.

Theorem 3.2. The generating function of the q-hyperharmonic numbers is

$$
\sum_{n=1}^{\infty} H_{q}(n, k) z^{n}=\frac{-\log _{q}\left(1-q^{k} z\right)}{q(z ; q)_{k}}, \quad k \geq 0
$$

where $-\log _{q}(1-t):=\sum_{n=1}^{\infty} \frac{t^{n}}{[n]_{q}}$ is the q-logarithm function.
Proof. Let $a_{n}^{0}(x, q)=\frac{1}{q[n+1]_{q}}$ and $a_{0}^{n}(x, q)=q^{n-1}$ be given for $n \geq 1$. From Theorem 2.3 with $x=q$, we obtain

$$
A^{k}(z)=\sum_{n=1}^{\infty} H_{q}(n+1, k) z^{n}=\sum_{n=0}^{\infty} H_{q}(n+1, k) z^{n}-H_{q}(1, k)=\sum_{n=1}^{\infty} H_{q}(n, k) z^{n-1}-q^{k-1}
$$

and thus

$$
\sum_{n=1}^{\infty} H_{q}(n, k) z^{n}=z A^{k}(z)+q^{k-1} z
$$

On the other hand,

$$
A^{k}(z)=\frac{q^{k} a\left(q^{k} z\right)}{(z ; q)_{k}}+z \sum_{i=1}^{k} \frac{q^{2 k-i-1}}{(z ; q)_{k-i+1}} .
$$

By using the following equation

$$
\begin{aligned}
a\left(q^{k} z\right) & =\sum_{n=1}^{\infty} \frac{1}{q[n+1]_{q}}\left(q^{k} z\right)^{n}=\frac{1}{q^{k} z} \sum_{n=1}^{\infty} \frac{1}{q[n]_{q}}\left(q^{k} z\right)^{n}-\frac{1}{q} \\
& =\frac{1}{q^{k} z}\left(\frac{-\log _{q}\left(1-q^{k} z\right)}{q}\right)-\frac{1}{q}=\frac{-\log _{q}\left(1-q^{k} z\right)}{q^{k+1} z}-\frac{1}{q^{\prime}}
\end{aligned}
$$

we get

$$
A^{k}(z)=\frac{-\log _{q}\left(1-q^{k} z\right)}{q z(z ; q)_{k}}-\frac{q^{k-1}}{(z ; q)_{k}}+z \sum_{i=1}^{k} \frac{q^{2 k-i-1}}{(z ; q)_{k-i+1}} .
$$

It is not difficult to show that

$$
z \sum_{i=1}^{k} \frac{q^{2 k-i-1}}{(z ; q)_{k-i+1}}=\frac{q^{k-1}}{(z ; q)_{k}}-q^{k-1}
$$

from where it comes that

$$
\sum_{n=1}^{\infty} H_{q}(n, k) z^{n}=\frac{-\log _{q}\left(1-q^{k} z\right)}{q(z ; q)_{k}}-q^{k-1} z+q^{k-1} z=\frac{-\log _{q}\left(1-q^{k} z\right)}{q(z ; q)_{k}}
$$

The proof is then complete.
Corollary 3.3. The generating function of the hyperharmonic numbers is

$$
\sum_{n=1}^{\infty} H(n, k) z^{n}=\frac{-\log (1-z)}{(1-z)^{k}}, \quad k \geq 0
$$

3.2. Some number theoretical results for the q-harmonic numbers. Taking a slightly modified version (see, e.g., [18]) of the Mansour-Shattuck q-harmonic number yields some connections to number theory. Namely, let

$$
\begin{equation*}
H_{n, q}=\sum_{k=1}^{n} \frac{1}{[k]_{q}} \tag{7}
\end{equation*}
$$

Then
Proposition 3.4. We have

$$
\sum_{n \geq 1} H_{n, q} q^{n}=\sum_{n \geq 1} d(n) q^{n}
$$

where $d(n)=\sum_{d \mid n} 1$ is the divisor function.
Proof. By definition,

$$
H_{n, q}=(1-q) \sum_{k=1}^{n} \frac{1}{1-q^{k}}
$$

Since

$$
\sum_{n \geq 1} d(n) q^{n}=\sum_{n=1}^{\infty} \frac{q^{n}}{1-q^{n}}
$$

we have

$$
\begin{aligned}
& \sum_{n=1}^{\infty} H_{n, q} q^{n}=(1-q) \sum_{n=1}^{\infty} q^{n} \sum_{k=1}^{n} \frac{1}{1-q^{k}}=(1-q) \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} \frac{q^{n}}{1-q^{k}} \\
& \quad=(1-q) \sum_{k=1}^{\infty} \frac{q^{k}}{\left(1-q^{k}\right)(1-q)}=\sum_{k=1}^{\infty} \frac{q^{k}}{\left(1-q^{k}\right)}=\sum_{n \geq 1} d(n) q^{n}
\end{aligned}
$$

3.3. A recursion with respect to (7). Since the harmonic numbers satisfy the identity

$$
H_{n}=\sum_{k=1}^{n}\binom{n}{k} \frac{(-1)^{k+1}}{k}
$$

one might think

$$
H_{n, q}=\sum_{k=1}^{n}\left[\begin{array}{l}
n \tag{8}\\
k
\end{array}\right] a_{k}
$$

holds for some sequence a_{k} with the q-binomial coefficients instead of the classical binomial coefficients. This is so, but a_{k} does not have a simple form. In order to find a_{k}, we shall need the notion of the q-Seidel matrix of Clarke [5]. Given a sequence a_{n}, the q-Seidel matrix is associated to the double sequence a_{n}^{k} given by the recurrence

$$
\begin{aligned}
a_{n}^{0} & =a_{n} \quad(n \geq 0) \\
a_{n}^{k} & =q^{n} a_{n}^{k-1}+a_{n+1}^{k-1} \quad(n \geq 0, k \geq 1)
\end{aligned}
$$

In addition, a_{n}^{0} is called the initial sequence and a_{0}^{n} the final sequence of the q-Seidel matrix. Then the identity

$$
a_{0}^{n}=\sum_{k=0}^{n}\left[\begin{array}{l}
n \tag{9}\\
k
\end{array}\right] a_{k}^{0}
$$

connects the initial and the final sequence.
Define the generating functions of a_{n}^{0} and a_{0}^{n} as

$$
a(x)=\sum_{n \geq 0} a_{n}^{0} x^{n}, \quad \bar{a}(x)=\sum_{n \geq 0} a_{0}^{n} x^{n},
$$

and

$$
A(x)=\sum_{n \geq 0} a_{n}^{0} \frac{x^{n}}{[n]_{q}!}, \quad \bar{A}(x)=\sum_{n \geq 0} a_{0}^{n} \frac{x^{n}}{[n]_{q}!} .
$$

A proposition given in [5] states that these functions are related by the following equations:

$$
\begin{align*}
\bar{a}(x) & =\sum_{n \geq 0} a_{n}^{0} \frac{x^{n}}{(x ; q)_{n+1}} \tag{10}\\
\bar{A}(x) & =e_{q}(x) A(x) \tag{11}
\end{align*}
$$

Online Journal of Analytic Combinatorics, Issue 12 (2017), \#7
where

$$
e_{q}(x)=\sum_{n \geq 0} \frac{x^{n}}{[n]_{q}!}
$$

is the q-analogue of the exponential function [13]. We introduce the notation $\operatorname{Egf}\left(a_{n}\right)$ and $\operatorname{Gf}\left(a_{n}\right)$ for the exponential and ordinary generating function of a_{n}, respectively.

To reach our aim posed in (8), our approach is as follows. Let the final sequence be $b_{n}=H_{n, q}$. We determine the initial sequence $a_{n}^{0}=a_{n}$. Then $\operatorname{Egf}\left(b_{n}\right) \equiv \operatorname{Egf}\left(H_{n, q}\right)=$ $e_{q} \operatorname{Egf}\left(a_{n}\right)$. And, to get $\operatorname{Egf}\left(a_{n}\right)$ we determine a_{n} by using (10) and

$$
\sum_{n \geq 1} H_{n, q} x^{n}=\frac{1-q}{1-x} \sum_{n \geq 1} \frac{x^{n}}{1-q^{n}}
$$

Therefore

$$
\begin{equation*}
\operatorname{Gf}\left(b_{n}\right) \equiv \operatorname{Gf}\left(H_{n, q}\right)=\frac{1-q}{1-x} \sum_{n \geq 1} \frac{x^{n}}{1-q^{n}}=\sum_{n \geq 1} a_{n} \frac{x^{n}}{(x ; q)_{n+1}} . \tag{12}
\end{equation*}
$$

From this equation a_{n} can be determined. (Note that $a_{0}=0$.)
Proposition 3.5. We have

$$
H_{n, q}=\sum_{k=1}^{n}\left[\begin{array}{l}
n \\
k
\end{array}\right] a_{k}
$$

where the sequence a_{k} is determined recursively by

$$
\sum_{k=1}^{n} a_{k} q^{n-k}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]=\frac{1}{[n]_{q}}=\frac{1-q}{1-q^{n}} \quad\left(a_{0}:=0\right)
$$

Proof. The denominator of the right hand side of (12) is

$$
\begin{equation*}
\frac{1}{(x ; q)_{n+1}}=\frac{1}{1-x} \frac{1}{(q x ; q)_{n}}=\frac{1}{1-x} \frac{\left(q^{n} q x ; q\right)_{\infty}}{(q x ; q)_{\infty}} \tag{13}
\end{equation*}
$$

The q-binomial theorem [13, Section 1.3] states that

$$
\frac{(a z ; q)_{\infty}}{(z ; q)_{\infty}}=\sum_{k \geq 0} \frac{(a ; q)_{k}}{(q ; q)_{k}} z^{k}
$$

Applying this to (13),

$$
\frac{1}{1-x} \frac{\left(q^{n} q x ; q\right)_{\infty}}{(q x ; q)_{\infty}}=\frac{1}{1-x} \sum_{k \geq 0} \frac{\left(q^{n} ; q\right)_{k}}{(q ; q)_{k}}(q x)^{k}
$$

Thus (12) becomes

$$
(1-q) \sum_{n \geq 1} \frac{x^{n}}{1-q^{n}}=\sum_{n \geq 0} a_{n} x^{n}\left(\sum_{k \geq 0} \frac{\left(q^{n} ; q\right)_{k}}{(q ; q)_{k}}(q x)^{k}\right)
$$

Let

$$
B_{k, n}=\frac{\left(q^{n} ; q\right)_{k}}{(q ; q)_{k}} q^{k}
$$

for short. Then

$$
B_{k, n}=q^{k}\left[\begin{array}{c}
n+k-1 \\
k
\end{array}\right]
$$

for all n and k. Moreover,

$$
\begin{equation*}
(1-q) \sum_{n \geq 1} \frac{x^{n}}{1-q^{n}}=\sum_{n \geq 0} a_{n} x^{n}\left(\sum_{k \geq 0} B_{k, n} x^{k}\right) \tag{14}
\end{equation*}
$$

If we write the sums term by term, we get

$$
\begin{aligned}
& a_{0}\left(B_{0,0}+B_{1,0} x+B_{2,0} x^{2}+\cdots\right)+a_{1} x^{1}\left(B_{0,1}+B_{1,1} x+B_{2,1} x^{2}+\cdots\right)+\cdots \\
&=a_{0} B_{0,0}+x\left(a_{0} B_{1,0}+a_{1} B_{0,1}\right)+x^{2}\left(a_{0} B_{2,0}+a_{1} B_{1,1}+a_{2} B_{0,2}\right)+\cdots
\end{aligned}
$$

Comparing the coefficients here with those on the left hand side of (14), we have

$$
\sum_{k=0}^{n} a_{k} B_{n-k, k}=\frac{1-q}{1-q^{n}}
$$

Note that - bacause of (12) - a_{0} must be zero. Remember also that a_{k} is the initial sequence of our q-Seidel matrix, so (9) gives

$$
H_{n, q}=\sum_{k=1}^{n}\left[\begin{array}{l}
n \tag{15}\\
k
\end{array}\right] a_{k} .
$$

This is our proposition.
Remark. It is worth to present the first terms of the sequence a_{n} :

$$
\begin{aligned}
& a_{0}=0 \\
& a_{1}=1, \\
& a_{2}=-\frac{q^{2}+q-1}{q+1}, \\
& a_{3}=\frac{q^{5}+q^{4}-q^{2}-q+1}{q^{2}+q+1}, \\
& a_{4}=-\frac{q^{9}+q^{8}-2 q^{5}+q^{2}+q-1}{q^{3}+q^{2}+q+1}, \\
& a_{5}=\frac{q^{14}+q^{13}-q^{10}-q^{9}-q^{8}+q^{7}+q^{6}+q^{5}-q^{2}-q+1}{q^{4}+q^{3}+q^{2}+q+1}, \\
& a_{6}=-\frac{q^{20}+q^{19}-q^{16}-2 q^{14}+q^{12}+q^{11}+q^{10}+q^{9}-2 q^{7}-q^{5}+q^{2}+q-1}{q^{5}+q^{4}+q^{3}+q^{2}+q+1} .
\end{aligned}
$$

It would be interesting to give a simple formula for the numerator.
As a consequence of (11) and (15), we have the following connection:

$$
\operatorname{Egf}\left(H_{n, q}\right)=e_{q} \operatorname{Egf}\left(a_{n}\right)
$$

3.4. A relation to the q-Stirling numbers. The q-Stirling numbers of the first kind [4, p. 155] are defined recursively by

$$
\begin{equation*}
s_{q}(n+1, k)=s_{q}(n, k-1)+[n]_{q} s_{q}(n, k), \tag{16}
\end{equation*}
$$

and $s_{q}(0,0)=1, s_{q}(n, 0)=0$ when $n>0$.
Note that

$$
\begin{equation*}
H_{n, q}=\frac{1}{[n]_{q}!} s_{q}(n+1,2) \tag{17}
\end{equation*}
$$

where $H_{n, q}$ is defined in (7).
To show this, let $H_{n, q}^{2}=\frac{1}{[n]]_{q}!} s_{q}(n+1,2)$. Then

$$
H_{n, q}^{2}=\frac{1}{[n]_{q}!} s_{q}(n+1,2)=\frac{1}{[n]_{q}!} s_{q}(n, 1)+\frac{1}{[n-1]_{q}!} s_{q}(n, 2)=\frac{1}{[n]_{q}}+H_{n-1, q}^{2}
$$

hence $H_{n, q}^{2}$ satisfies the same recursion as $H_{n, q}$. Since $H_{1, q}^{2}=1=H_{1, q}$, the two sequences coincide.

Acknowlegements

The authors would like to thank the anonymous referee for reading carefully the paper and giving helpful comments and suggestions.

References

[1] G. E. Andrews, The Theory of Partitions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, U.K., 1998.
[2] A. T. Benjamin, D. Gaebler and R. Gaebler, A combinatorial approach to hyperharmonic numbers, Integers 3 (2003), \#A15.
[3] M. Cetin-Firengiz and N. Tuglu, On the q-Seidel matrix. In: P. Anderson, C. Ballot and W. Webb. Proceedings of Sixteenth International Conference on Fibonacci Numbers and Their Applications, Rochester, New York, (2014), 117-123.
[4] C. A. Charalambides, Combinatorial Methods in Discrete Distributions, Wiley - Interscience, 2005.
[5] R. Clarke, G.-N. Han and J. Zeng, A combinatorial interpretation of q-derangement numbers, Ann. Comb. 4 (1997), 313-327.
[6] J. H. Conway and R. K. Guy, The Book of Numbers, Springer-Verlag, New York, Inc., 1996.
[7] A. Dil and V. Kurt, Investigating geometric and exponential polynomials with Euler-Seidel matrices, J. Integer Seq. 14 (2011), Article 11.4.6.
[8] A. Dil, V. Kurt and M. Cenkci, Algorithms for Bernoulli and allied polynomials, J. Integer Seq. 10 (2007), Article 07.5.4.
[9] A. Dil and I. Mező, A symmetric algorithm for hyperharmonic and Fibonacci numbers, Appl. Math. Comput. 206 (2008), 942-951.
[10] D. Dumont, Matrices d'Euler-Seidel, Sém. Lothar. Combin., 1981, Paper B05c. (Formerly Publ. I.R.M.A. Strasbourg, 1982, 182/S-04, pp. 59-78.)
[11] D. Dumont and A. Randrianarivony, Dérangements et nombres de Genocchi, Discrete Math. 132 (1994), 37-49.
[12] D. Foata and G.-N. Han, Seidel triangle sequences and bi-Entringer numbers, European J. Combin. 42 (2014), 243-260.
[13] G. Gasper and M. Rahman, Basic Hypergeometric Series (second edition), Cambridge University Press, 2004.
[14] T. Mansour and M. Shattuck, A q-analog of the hyperharmonic numbers, Afr. Mat. 25 (2014), 147-160.
[15] T. Mansour, M. Shattuck and C. Song, q-Analogs of identities involving harmonic numbers and binomial coefficients, Appl. Appl. Math. 7(1) (2012), 22-36.
[16] I. Mező and A. Dil, Euler-Seidel method for certain combinatorial numbers and a new characterization of Fibonacci sequence, Cent. Eur. J. Math. 7(2) (2009), 310-321.
[17] J. L. Ramírez and M. Shattuck, A multi-parameter generalization of the symmetric algorithm, Math. Slovaca, to appear.
[18] C. Xu , Identities for q-harmonic numbers and q-binomial coefficients, arXiv preprint: arXiv:1701.00394v1, (2017).
[19] J. Zeng, The Akiyama-Tanigawa algorithm for Carlitz's q-Bernoulli numbers, Integers 6 (2006), \#A05.

Except where otherwise noted, content in this article is licensed under a Creative Commons Attribution 4.0 International license.

Department of Mathematics, Nanjing University of Information Science and Technology, Nanjing 210044, P. R. CHINA.

E-mail address: istvanmezo81@gmail.com
Departamento de Matemáticas, Universidad Nacional de Colombia, Bogotá, COLOMBIA
E-mail address: jlramirezr@unal.edu.co

[^0]: Date: September 24, 2017.
 1991 Mathematics Subject Classification. 05A30, 11B65.
 Key words and phrases. q-symmetric algorithm, q-hyperharmonic numbers, q-harmonic numbers, combinatorial identities.

 The research of István Mező was supported by the Startup Foundation for Introducing Talent of NUIST. Project no.: S8113062001. And by the National Natural Science Foundation for China. Grant no. 11501299.

