IRREDUCIBLE FACTORS OF THE q-LAH NUMBERS OVER \mathbb{Z}

QING ZOU

Abstract

In this paper, we first give a new q-analogue of the Lah numbers. Then we show the irreducible factors of the q-Lah numbers over \mathbb{Z}.

1. Introduction

In combinatorics, the Lah numbers are used to count the number of ways a set of n elements can be partitioned into k nonempty linearly ordered subsets. These numbers were first discovered by Ivo Lah in 1955. Usually, the Lah numbers were denoted by $L(n, k)$ and defined as

$$
\begin{equation*}
L(n, k)=\binom{n-1}{k-1} \frac{n!}{k!} . \tag{1}
\end{equation*}
$$

It is straightforward that $L(n, k)$ can also be represented as

$$
\begin{equation*}
L(n, k)=\binom{n}{k} \frac{(n-1)!}{(k-1)!} . \tag{2}
\end{equation*}
$$

Another kind of numbers related to Lah numbers is r-Lah numbers, which were denoted by $\left[\begin{array}{l}n \\ k\end{array}\right]_{r}$. The r-Lah numbers were used to count the number of partitions of the set $\{1,2, \cdots, n\}$ into k nonempty ordered lists, such that the numbers $1,2, \cdots, r$ are in distinct lists. The r-Lah numbers have the following explicit formula

$$
\left\lfloor\begin{array}{l}
n \tag{3}\\
k
\end{array}\right\rfloor_{r}=\binom{n-r}{k-r} \frac{(n+r-1)!}{(k+r-1)!}=\binom{n+r-1}{k+r-1} \frac{(n-r)!}{(k-r)!} .
$$

There are some results on r-Lah numbers recently, see for example [1, 2, 3].
In this paper, we would like to introduce the q-analogue of the Lah numbers given by (1), which we call them q-Lah numbers. Before introducing the q-Lah numbers, several notations need to be introduced.

The basic notation of this paper is the quantum factorial symbol, which is defined as

$$
(x ; q)_{n}:=\prod_{k=0}^{n-1}\left(1-x q^{k}\right), \quad 0<q<1 .
$$

Date: March 24, 2017.
2010 Mathematics Subject Classification. 05A10, 33D05, 12D05.
Key words and phrases. Lah Numbers, q-Lah Numbers, Irreducible, Cyclotomic Polynomial.

Let x be a real number, the q-real number of x is defined as

$$
[x]_{q}=\frac{1-q^{x}}{1-q} .
$$

In particular, when k is a positive integer, $[k]_{q}=1+q+\cdots+q^{k}$ is called q-positive integer. It is clear that $[k]_{q}$ is irreducible over \mathbb{Z}. The k-th order factorial of the q number $[x]_{q}$ is defined as

$$
[x]_{k, q}=[x]_{q}[x-1]_{q} \cdots[x-k+1]_{q}=\frac{\left(1-q^{x}\right)\left(1-q^{x-1}\right) \cdots\left(1-q^{x-k+1}\right)}{(1-q)^{k}} .
$$

In particular, $[k]_{q}!=[1]_{q}[2]_{q} \cdots[k]_{q}$ is called the q-factorial. The q-binomial coefficient is defined as

$$
\left[\begin{array}{l}
x \\
k
\end{array}\right]_{q}=\frac{[x]_{k, q}}{[k]_{q}}=\frac{\left(1-q^{x}\right)\left(1-q^{x-1}\right) \cdots\left(1-q^{x-k+1}\right)}{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{k}\right)} .
$$

In particular, for a positive integer n,

$$
\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}}
$$

With these concepts, we can now define the q-Lah numbers as

$$
L_{q}(n, k):=\left[\begin{array}{l}
n-1 \tag{4}\\
k-1
\end{array}\right]_{q} \frac{[n]_{q}!}{[k]_{q}!} .
$$

Actually, at the end of Wagner's beautiful paper [4], Wagner also gave three kinds of q-Lah numbers as follows,

$$
\begin{aligned}
\hat{L}_{q}(n, k) & :=\frac{[n]_{q}!}{k!}\binom{n-1}{k-1}, \\
\tilde{L}_{q}(n, k) & :=\frac{n!}{k!}\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q},
\end{aligned}
$$

and

$$
L_{q}(n, k):=q^{\frac{k(k-1)}{2}} \tilde{L}_{q}(n, k)
$$

The reason why we use the q-Lah numbers defined by (4) instead of these three kinds of q-Lah number is though these three kinds of q-Lah numbers are q-analogues of the Lah numbers, they do not generalize $L(n, k)$ "completely". In other words, these three kinds of q-Lah numbers do not hold the property like Property 2.2 we will show in next section. However, both Lah numbers and r-Lah numbers hold the same property. In the remaining of the paper, the term q-Lah numbers and the notation $L_{q}(n, k)$ refer to the q-Lah numbers defined by (4).

In next section, we will discuss the basic properties of the q-Lah numbers $L_{q}(n, k)$. Next, we would like to introduce another concept, the n-cyclotomic polynomial. Let $\Phi_{n}(q)$ be the n-cyclotomic polynomial,

$$
\Phi_{n}(q)=\prod_{\substack{0 \leq m<n \\ \operatorname{gcd}(m, n)=1}}\left(q-\mathrm{e}^{2 \pi m i / n}\right)
$$

It is well-known that $\Phi_{n}(q) \in \mathbb{Z}[q]$ is the irreducible polynomial for $\mathrm{e}^{2 \pi i / n}$. The polynomial $x^{n}-1$ has the following factorization into irreducible polynomials over \mathbb{Z} :

$$
\begin{equation*}
x^{n}-1=\prod_{j \mid n} \Phi_{j}(x) . \tag{5}
\end{equation*}
$$

With these definitions and notations in hand, we can now start our discussion.

2. Basic Properties of q-Lah Numbers

In these section, we would like to introduce two basic properties of q-Lah numbers.
Property 2.1. The relation between q-Lah numbers and Lah numbers is

$$
\lim _{q \rightarrow 1} L_{q}(n, k)=L(n, k)
$$

This relation can be obtained by the following two limits.

$$
\begin{aligned}
& \lim _{q \rightarrow 1}\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}= \\
&=\lim _{q \rightarrow 1} \frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} \\
&= \lim _{q \rightarrow 1} \frac{(1-q)\left(1-q^{2}\right) \cdots\left(1-q^{n}\right)}{(1-q) \cdots\left(1-q^{k}\right)(1-q) \cdots\left(1-q^{n-k}\right)} \\
&= \lim _{q \rightarrow 1} \frac{(1+q)\left(1+q+q^{2}\right) \cdots\left(1+q+\cdots+q^{n-1}\right)}{(1+q) \cdots\left(1+q+\cdots q^{k-1}\right)(1+q) \cdots\left(1+q+\cdots+q^{n-k+1}\right)} \\
&= \frac{1 \times 2 \times \cdots \times(n-1) \times n}{1 \times 2 \times \cdots \times(k-1) \times k \times 1 \times 2 \times \cdots \times(n-k+1) \times(n-k)} \\
&= \frac{n!}{k!(n-k)!}=\binom{n}{k} . \\
& \lim _{q \rightarrow 1}[n]_{q}!=\lim _{q \rightarrow 1}[1]_{q}[2]_{q} \cdots[n]_{q} \\
&=\lim _{q \rightarrow 1} \frac{1-q 1-q}{1-q} \frac{1-q}{1-q} \cdots \frac{1-q^{n}}{1-q} \\
&=\lim _{q \rightarrow 1}(1+q) \cdots\left(1+q+\cdots+q^{n-1}\right) \\
&= 1 \times 2 \times \cdots \times n=n!.
\end{aligned}
$$

By Property 2.1, we can now claim that q-Lah numbers are q-analogue of Lah numbers.

Just like (2) and (3) for Lah numbers and r-Lah numbers, q-Lah numbers also have the same relation, which can be stated as the following property.

Property 2.2. The q-Lah numbers have the following formula

$$
L_{q}(n, k)=\left[\begin{array}{l}
n-1 \tag{6}\\
k-1
\end{array}\right]_{q} \frac{[n]_{q}!}{[k]_{q}!}=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{[n-1]_{q}!}{[k-1]_{q}!} .
$$

Proof. By the definitions showed in last section, we have

$$
\begin{aligned}
L_{q}(n, k) & =\frac{(q ; q)_{n-1}}{(q ; q)_{k-1}(q ; q)_{n-k}} \frac{(q ; q)_{n}}{(q ; q)_{k}} \frac{(1-q)^{k}}{(1-q)^{n}} \\
& =\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} \frac{(q ; q)_{n-1}}{(q ; q)_{k-1}} \frac{(1-q)^{k-1}}{(1-q)^{n-1}} \\
& =\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{[n-1]_{q}!}{[k-1]_{q}!} .
\end{aligned}
$$

Thus, (6) holds true.

3. Irreducible Factors of the q-Lah Numbers

In this section, we will mainly focus on irreducible factors of the q-Lah numbers over \mathbb{Z}. It is clear that the q-Lah numbers always have the following irreducible factors over \mathbb{Z},

$$
[2]_{q}, \cdots,[n]_{q} .
$$

This is because $L_{q}(n, k)=\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]_{q} \frac{[n]_{q}!}{[k]_{q}!},[n]_{q}!=\prod_{i=1}^{n}[i]_{q}=\prod_{i=2}^{n}[i]_{q}$ and we have mentioned above that $[i]_{q}$ is irreducible over \mathbb{Z}. So, we call $[2]_{q}, \cdots,[n]_{q}$ the trivial irreducible factors of the q-Lah numbers over \mathbb{Z}. By these trivial irreducible factors, we get the following congruence

$$
L_{q}(n, k) \equiv 0 \quad\left(\bmod \prod_{i=2}^{n}[i]_{q}\right)
$$

Except for these trivial irreducible factors, q-Lah numbers also have some other irreducible factors under certain condition.

Theorem 3.1. Suppose $2 k \leq n+1$. Not including these trivial irreducible factors mentioned above, the q-Lah numbers $L_{q}(n, k)$ have at least other k irreducible factors over \mathbb{Z}.

Proof. By the definition of q-Lah numbers, we have

$$
L_{q}(n, k)=\left[\begin{array}{l}
n-1 \\
k-1
\end{array}\right]_{q} \frac{[n]_{q}!}{[k]_{q}!} .
$$

Since [5, Theorem 2] is important to our statement. Let us recall it here. Let $\lfloor x\rfloor$ stands for the largest integer less than or equal to x. Then by (5), we can get that

$$
\begin{aligned}
& {\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q}=\frac{(q ; q)_{n}}{(q ; q)_{k}(q ; q)_{n-k}} } \\
= & \frac{\prod_{i=1}^{\infty}\left(\Phi_{i}(q)\right)^{\lfloor n / i\rfloor}}{\prod_{i=1}^{\infty}\left(\Phi_{i}(q)\right)^{\lfloor k / i\rfloor} \prod_{i=1}^{\infty}\left(\Phi_{i}(q)\right)^{\lfloor(n-k) / i\rfloor}} \\
= & \prod_{i=1}^{n}\left(\Phi_{i}(q)\right)^{\lfloor n / i\rfloor-\lfloor k / i\rfloor-\lfloor(n-k) / i\rfloor} .
\end{aligned}
$$

Suppose $n-k+1 \leq i \leq n$. When $2 k \leq n$, we have that $i \geq k+1$. So,

$$
\left\lfloor\frac{n}{i}\right\rfloor=1, \quad\left\lfloor\frac{k}{i}\right\rfloor=\left\lfloor\frac{n-k}{i}\right\rfloor=0 .
$$

These give us that when $2 k \leq n,\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ has at least k irreducible factors over $\mathbb{Z}: \Phi_{n-k+1}(q)$, $\Phi_{n-k+2}(q), \cdots, \Phi_{n}(q)$. By this statement, we can say that when $2 k \leq n+1,\left[\begin{array}{l}n-1 \\ k-1\end{array}\right]_{q}$ has at least $k-1$ irreducible factors over $\mathbb{Z}: \Phi_{n-k+1}(q), \Phi_{n-k+2}(q), \cdots, \Phi_{n-1}(q)$.

There are two ways to show that $\Phi_{n}(q)$ is also an irreducible factor of $L_{q}(n, k)$. The first way is as follows. By (5), we can obtain that

$$
(q ; q)_{n}=(-1)^{n} \prod_{i=1}^{n} \Phi_{i}^{\lfloor n / i\rfloor}(q)
$$

which implies that $\Phi_{n}(q)$ is also an irreducible factor of $L_{q}(n, k)$.
Another way to show this is to use Property 2.2. By Property 2.2, we have

$$
L_{q}(n, k)=\left[\begin{array}{l}
n \\
k
\end{array}\right]_{q} \frac{[n-1]_{q}!}{[k-1]_{q}!} .
$$

Then according to [5, Theorem 2], we know that $\Phi_{n}(q)$ is also an irreducible factor of $L_{q}(n, k)$.

To sum up, we can say that $\Phi_{n-k+1}(q), \Phi_{n-k+2}(q), \cdots, \Phi_{n}(q)$ are k irreducible factors of $L_{q}(n, k)$ in this case.

According to this conclusion, we can derive the following corollary at once.
Corollary 3.2. For $2 k \leq n+1$, we have the following congruence

$$
L_{q}(n, k) \equiv 0 \quad\left(\bmod \prod_{i=0}^{k-1} \Phi_{n-i}(q)\right)
$$

Here, we would like to introduce another irreducible factor of a very special $L_{q}(n, k)$.

Theorem 3.3. For the special case $n=2 k$. In addition to these trivial irreducible factors and the k irreducible factors mentioned in Theorem 3.1, $1+q^{k}$ is also an irreducible factor.

Proof. Since [6, Proposition 3.7]

$$
1+q^{k}=\frac{1+q+\cdots+q^{k-1}+q^{k}\left(1+q+\cdots+q^{k-1}\right)}{\left(1+q+\cdots+q^{k-1}\right)}=\frac{1+\cdots+q^{2 k-1}}{1+\cdots+q^{k-1}}=\frac{\left(1-q^{2 k}\right)}{\left(1-q^{k}\right)}
$$

Thus,

$$
\left(1+q^{k}\right)\left[\begin{array}{c}
2 k-1 \\
k
\end{array}\right]_{q}=\frac{\left(1-q^{2 k}\right)}{\left(1-q^{k}\right)} \frac{(q ; q)_{2 k-1}}{(q ; q)_{k}(q ; q)_{k-1}}=\frac{(q ; q)_{2 k}}{(q ; q)_{k}^{2}}=\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}
$$

Furthermore, by the definition of Gaussian polynomials, it is clear that $\left[\begin{array}{c}2 k-1 \\ k\end{array}\right]_{q}=$ $\left[\begin{array}{c}2 k-1 \\ k-1\end{array}\right]_{q}$. These give us that

$$
\left[\begin{array}{c}
2 k \\
k
\end{array}\right]_{q}=\left(1+q^{k}\right)\left[\begin{array}{c}
2 k-1 \\
k
\end{array}\right]_{q}=\left(1+q^{k}\right)\left[\begin{array}{c}
2 k-1 \\
k-1
\end{array}\right]_{q}
$$

Then the conclusion follows from the above formula and Property 2.2.
With this we can get the following congruence

$$
L_{q}(2 k, k) \equiv 0 \quad\left(\bmod \left(1+q^{k}\right)\right)
$$

Theorem 3.4. Let $\{x\}$ denote the fractional part of $x . \Phi_{i}(q)(1 \leq i \leq n)$ is an irreducible factor of $L_{q}(n, k)$ if and only if $\{k / i\}>\{n / i\}$.

Proof. It is straightforward that $\Phi_{i}(q)(1 \leq i \leq n)$ is an irreducible factor of $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ if and only if $\{k / i\}>\{n / i\}$. So, we can get that $\Phi_{i}(q)(1 \leq i \leq n)$ is an irreducible factor of $L_{q}(n, k)$ if and only if $\{k / i\}>\{n / i\}$ because $\left[\begin{array}{l}n \\ k\end{array}\right]_{q}$ is a factor of $L_{q}(n, k)$.

According to this theorem, we have
Corollary 3.5. The congruence

$$
L_{q}(n, k) \equiv 0 \quad\left(\bmod \prod_{i=1}^{n} \Phi_{i}(q)\right)
$$

holds if and only if $\{k / i\}>\{n / i\}$.

Acknowledgements. The author appreciates the anonymous reviewer for the careful reading and many valuable suggestions of the manuscript.

References

[1] H. Belbachir and I. E. Bousbaa, Combinatorial identities for the r-Lah numbers, Ars Combin., 115 (2014), pp. 453-458.
[2] G. Nyul and G. Racz, The r-Lah numbers, Discrete Math., 338 (2015), pp. 1660-1666.
[3] M. Shattuck, Generalized r-Lah numbers, Proc. Indian Acad. Sci. (Math. Sci.), 126 (2016), pp. 461-478.
[4] C. G. Wagner, Generalized Stirling and Lah numbers, Discrete Math., 160 (1996), pp. 199-218.
[5] W. Y. C Chen and Q.-H. Hou, Factors of the Gaussian coefficients, Discrete Math., 306 (2006), pp. 1446-1449.
[6] Q. Zou, Congruences from q-Catalan identities, Trans. Comb., 5 (2016), no. 4, pp. 57-67.
Department of Mathematics, The University of Iowa, Iowa City, IA 52242, USA
E-mail address: zou-qing@uiowa.edu

