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Abstract. In this paper, we analyze the asymptotic number I(m, n) of involutions of
large size n with m singletons. We consider a central region and a non-central region. In
the range m = n− nα, 0 < α < 1, we analyze the dependence of I(m, n) on α. This paper
fits within the framework of Analytic Combinatorics.

1. Introduction

During the last few years, we have been interested in asymptotic properties of some
permutation parameters. For instance, we analyzed the number of inversions in [9] (in
cooperation with Prodinger), of cycles (related to the Stirling numbers of the first kind)
in [7], of rises (related to Eulerian numbers) in [8]. We extended the Gaussian approx-
imation with more terms and we also considered some large deviation expansions. In
this paper, we turn to another property: the number of singletons in involutions, an in-
volution is a permutation σ such that σ2 is the identity permutation. This corresponds
to cycles of size 1 and 2, see Bóna [1] for details. We will use the saddle point method:
see Flajolet and Sedgewick [2, ch. VIII] for a nice introduction.

We denote by In the total number of involutions of size n and by I(m, n) the number
of all involutions of size n with m singletons. We define a random variable Jn by the
relation

P(Jn = m) =
I(m, n)

In
.

This corresponds to the number of singletons in an involution chosen (uniformly) at
random among all involutions of size n. In [2, ch. VIII, p.560], using the saddle point
technique, Flajolet and Sedgewick give the first terms of the asymptotic expansion of
In, also obtained by Knuth [6] (see also Moser and Wyman [10]). In Section 2, we
provide a more detailed expansion of In. In [2, ch. VIII, p.692], the authors provide the
first terms of the mean and variance of Jn. In Section 2, we consider a detailed analysis
of all moments of Jn. In [2, ch. VIII, p.692], the authors prove the dominant Gaussian
asymptotic of Jn by using together the saddle point technique and a generalized quasi-
powers technique (see Sachkov [11], Hwang [4], [5]). In Section 3, we give a detailed
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analysis of the asymptotic distribution of Jn. In Section 4, we consider a large deviation
range: m = n − nα, 0 < α < 1. In this section, we will use multiseries expansions:
multiseries are in effect power series (in which the powers may be non-integral but
must tend to infinity) and the variables are elements of a scale. The scale is a set
of variables of increasing order. The series is computed in terms of the variable of
maximum order, the coefficients of which are given in terms of the next-to-maximum
order, etc. This is more precise than mixing different terms.

Note finally that our approach can be used in generalizations of the involution: we
can deal with cycles of any chosen size and deal with singletons or other specific cycles.

2. The moments

We will prove the following theorem:

Theorem 2.1. The asymptotic expansion of the factorial moments of Jn is given by

E(J`n) = n`/2

[
1− `

2
√

n
− ` (`− 4)

8n
+

`
(
7− 18 `+ 5 `2)

48n3/2 +O
(

1
n2

)]
.

We have the classical (exponential) generating functions of In and I(m, n):

f1(z) =
∞

∑
n=0

In
zn

n!
= ez+z2/2,

f2(z, y) =
∞

∑
m=0

∞

∑
n=0

I(m, n)
zn

n!
ym = ezy+z2/2,

f3,m(z) =
∞

∑
n=0

I(m, n)
zn

n!
= ez2/2 zm

m!
.

From f3,m(z), we have

(1)
I(m, n)

n!
=

1
2(n−m)/2((n−m)/2)!m!

.

We define m` := ∏`−1
j=0 (m− j) as the `-th falling factorial of m.

We have

E(J`n) =
∞

∑
m=0

m`P(Jn = m) =
S`

In
,

S` :=
∞

∑
m=0

m` I(m, n) = n! [zn]
∂`

∂y`
f2(z, y)

∣∣∣∣∣
y=1

= n! [zn]z`ez+z2/2 = n![zn−`]ez+z2/2,

E(J`n) =
n!
In

In−`
(n− `)!

.

Now we turn to an asymptotic expansion of In.
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Let Ω denote the circle ρeiθ. By Cauchy’s theorem, it follows that (integral performed
counter-clockwise)

In/n! =
1

2πi

∫
Ω

f1(z)
zn+1 dz

=
1
ρn

1
2π

∫ π

−π
f1(ρeiθ)e−niθ dθ using z = ρeiθ

=
1
ρn

1
2π

∫ π

−π
exp

(
ln( f1(ρeiθ))− niθ

)
dθ

=
1
ρn

f1(ρ)

2π

∫ π

−π
exp

[
iκ1θ − niθ − 1

2
κ2θ2 − i

6
κ3θ3 + · · ·

]
dθ,(2)

where

κi :=
∂i

∂ui ln( f1(ρeu))|u=0 .

Now we have κ1 = ρ + ρ2 and we set κ1 − n = 0 such that the saddle point is the root
(of smallest modulus) of ρ2 + ρ− n = 0. (From now on, we only provide a few terms
in our expansions, but of course we use more terms in our computations). A direct
computation gives

ρ = −1
2
+

1
2

√
4n + 1

=
√

n− 1
2
+

1
8
√

n
− 1

128 n3/2 +
1

1024 n5/2 −
5

32768 n7/2 +O
(

1
n9/2

)
,

ln(ρ) =
ln(n)

2
− 1

2
√

n
+

1
48 n3/2 −

3
1280 n5/2 +

5
14336 n7/2 −

35
589824 n9/2 +O

(
1
n5

)
.

See Good [3] for a neat description of this technique.
The dominant part of (2) gives

f1(ρ)

ρn = exp(E1),

E1 := ρ +
ρ2

2
− n ln(ρ) =

n
2
+

ρ

2
− n ln(ρ)

=
(1− ln(n)) n

2
+
√

n− 1
4
+

1
24
√

n
− 1

640n3/2 +O
(

1
n2

)
,

with the substitution ρ2 = n − ρ. (This substitution will be frequently used in the
sequel.)

Now we turn to the integral. We have

κ2 = −ρ + 2n,
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and more generally

κj = −(2j−1 − 1)ρ + 2j−1n.

We choose a splitting value θ0 such that κ2θ2
0 → ∞, and κ3θ3

0 → 0, as n → ∞. If
we choose θ0 = nβ, we must have n2β+1 → ∞, n3β+1 → 0. For instance, we can use
θ0 = n−5/12. We must prove that the integral

Kn =
∫ 2π−θ0

θ0

exp
(

ln( f1(ρeiθ))− niθ
)

dθ

is such that |Kn| is exponentially small (tail pruning). This is done in [2, ch. VIII, p.559].
Now we use the classical trick of setting

∞

∑
j=2

κj(iθ)j/j! =
1
2

[
(n− ρ)(e2iθ − 1− 2iθ)

]
+ ρ(eiθ − 1− iθ) = −u2/2.

Computing θ as a series in u, this gives, by Lagrange inversion,

(3) θ =
∞

∑
i=1

ai
ui

ni/2 ,

with, for instance (we use more coefficients in our computations),

a1 =

√
2

2
+

√
2

8
√

n
−
√

2
64 n
− 3

√
2

256 n3/2 +
11
√

2
4096 n2 +O

(
1

n5/2

)
,

a2 = − i
6
− i

24
√

n
+

i
48 n

+
i

192 n3/2 −
i

192 n2 +O
(

1
n5/2

)
.

This expansion is valid in the dominant integration domain

|u| ≤
√

n θ0

a1
= O

(
n1/12

)
.

Setting dθ = dθ
du du, we integrate on u = [−∞, ∞]:

1
2πi

∫ ∞

−∞
e−u2/2 dθ

du
du.

The extension of the range (tail completion) is justified in [2, ch. VIII, p.560]. The same
justification is applicable in the next sections. The integration gives

1
2
√

π
√

n
F1, with

F1 := 1 +
1

4
√

n
− 19

96 n
− 13

384 n3/2 +O
(

1
n2

)
.

This leads to the proposition
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Proposition 2.2.

In

n!
∼ 1

2
√

π
√

n
F1 exp(E1)

=
1

2
√

π
√

n

[
1 +

1
4
√

n
− 19

96 n
− 13

384 n3/2 +O
(

1
n2

)]
×

× exp
[
(1− ln(n)) n

2
+
√

n− 1
4
+

1
24
√

n
− 1

640n3/2 +O
(

1
n2

)]
.

which extends previous results.
Now we turn to In−`

(n−`)! . We successively have, for ` = O(1),

ρ` + ρ2
` − n + ` = 0,

ρ2
` = n− `− ρ` is used as a next substitution,

ρ` =
√

n− 1
2
+

(1− 4 `)
8
√

n
− (−1 + 4 `)2

128n3/2 − (−1 + 4 `)3

1024n5/2

− 5 (−1 + 4 `)4

32768n7/2 +O
(

1
n9/2

)
,

ln(ρ`) =
ln(n)

2
− 1

2
√

n
− `

2n
+

1− 12 `
48n3/2 −

`2

4n2 −
3− 40 `+ 240 `2

1280n5/2 − `3

6n3

− −5 + 84 `− 560 `2 + 2240 `3

14336n7/2 − `4

8n4

− 35− 720 `+ 6048 `2 − 26880 `3 + 80640 `4

589824n9/2 +O
(

1
n5

)
,

f1(ρ`)

ρn
`

= exp(E1,`),

E1,` :=
n
2
+

ρ`
2
− `

2
− (n− `) ln(ρ`),

κj,` = −(2j−1 − 1)ρ` + 2j−1(n− `),
θ is again given by (3),

a1,` =

√
2

2
+

√
2

8
√

n
+

√
2 (−1 + 16 `)

64n
+

√
2 (32 `− 3)
256n3/2 +O

(
1
n2

)
,

F1,` := 1 +
1

4
√

n
+
−19 + 48 `

96n
+

96 `− 13
384n3/2 +O

(
1
n2

)
,

In−`
(n− `)!

∼ 1
2
√

π
√

n
F1,` exp(E1,`).

Note that setting ` = 0, we recover of course In. The detailed expansions of ρ` and
ln(ρ`) are used in E1 and E1,`.
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We are now ready to compute E(J`n) =
S`
In

. We derive

exp(E1,` − E1) = n`/2T1,

T1 = 1− 1
2
√

n
− `2

8n
+

` (5 `− 1) (`− 1)
48n3/2 +

`2 (−4 + 24 `+ `2)
384n2

−
`3 (10− 60 `+ 41 `2)

3840n5/2 +O
(

1
n3

)
,

F1,`

F1
= T2,

T2 = 1 +
`

2n
+

`

8n3/2 +O
(

1
n2

)
,

T1T2 = 1− `

2
√

n
− ` (`− 4)

8n
+

`
(
7− 18 `+ 5 `2)

48n3/2 +O
(

1
n2

)
.

This leads to Theorem 2.1.
The first moments of Jn are now immediate:

M = E(Jn) =
S1

In
=
√

n− 1
2
+

3
8
√

n
− 1

8n
+O

(
1

n3/2

)
,

E(Jn(Jn − 1)) =
S2

In
,

σ2 =
S2

In
+ M−M2 =

√
n− 1 +

5
8
√

n
+O

(
1
n

)
,

σ = 4
√

n− 1
2 4
√

n
+

3
16n3/4 +O

(
1
n

)
.

All moments can be similarly mechanically obtained.

3. Distribution of Jn

We consider the central range M− 2σ < m < M + 2σ. The distribution of Jn is given
by the following theorem:

Theorem 3.1. The asymptotic distribution of Jn in the central range is given by the local limit
theorem:

P(Jn = m) = 2
1√

2πn1/4
e−x2/2

[
1 +

x
(
x2 − 3

)
6 4
√

n
+

30 + 27 x2 − 12 x4 + x6

72
1√
n

+
x
(
810− 2115 x2 + 999 x4 − 135 x6 + 5 x8)

6480n3/4 +O
(

1
n

)]
.(4)

We have m = M + xσ, x = Θ(1). We first analyze I(m,n)
n! .
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3.1. Approach 1: Asymptotic expansion of I(m,n)
n! using the saddle point technique.

We derive

κi :=
∂i

∂ui ln( f3,m(ρeu))|u=0 ,

κ1 = ρ2 + m,

ρ2 = n−m (we use that as a substitution in the sequel),

κj = (n−m)2j−1,

ρ =
√

n− 1
2
− x

2 4
√

n
+

1
8
√

n
− 1 + x2

8n
− x

32n5/4 +O
(

1
n3/2

)
,

ln(ρ) =
ln(n)

2
− 1

2
√

n
− x

2n3/4 −
x

4n5/4 −
5 + 12 x2

48n3/2 −
3x

32n7/4 +O
(

1
n2

)
.

The dominant part of (2) gives

f3,m(ρ)

ρn = exp(E2),(5)

E2 :=
ρ2

2
+ m ln(ρ)− ln(m!)− n ln(ρ),

due to Stirling’s formula we know that

ln(`!) = −`+ ` ln (`) +
ln (2π`)

2
+

1
12`

+O
(

1
`2

)
,(6)

hence

E2 =
(1− ln(n)) n

2
+
√

n− 1
4
− x2

2
− ln (n)

4
− ln (2)

2
− ln (π)

2
+

x
(
x2 − 3

)
6 4
√

n

− −5− 6 x2 + 2 x4

24
√

n
+

x
(
−10− 15 x2 + 3 x4)

60n3/4 +O
(

1
n

)
.

Let us mention that in the expansion of E2 we uncovered the − x2

2 exponent of the
density of a normal distribution appearing in the local law.
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Now we turn to the integral. Proceeding as previously, we have

1
2
(n−m)(e2iθ − 1− 2iθ) = −u2

2
,

θ is again given by (3),

a1 =

√
2

2
+

√
2

4
√

n
+

√
2x

4n3/4 +

√
2

16n
+

√
2x

4n5/4

+

√
2
(
1 + 3 x2)

16n3/2 +
7
√

2x
64n7/4 +O

(
1
n2

)
a2 = − i

6
− i

6
√

n
− ix

6n3/4 −
i

12n
− ix

4n5/4 −
i
(
8 x2 + 3

)
48n3/2 − 17 ix

96n7/4 +O
(

1
n2

)

This integration gives

1
2
√

π
√

n
F2,

F2 : = 1 +
1

2
√

n
+

x
2n3/4 −

1
24n

+
x

2n5/4 +
−1 + 3 x2

8n3/2 − x
32n7/4 +O

(
1
n2

)
,

I(m, n)
n!

= 2
[

1
2
√

π
√

n
F2 exp(E2)

]
=

1√
π
√

n
F2 exp(E2).

Note carefully the factor 2 in front of our expression: the tail pruning for the Gaussian
asymptotics leads to consider

<[ln( f3,m(ρeiθ))− niθ] = <[ρ2e2iθ/2 + miθ − niθ + m ln(ρ)− ln(m!)]

=
ρ2 cos(2θ)

2
+ m ln(ρ)− ln(m!)

which has two dominant peaks at 0 and π. So we must be more precise and analyze
these two peaks: we have, with n−m even,

<
[
e1/2 ρ2e2 iθ+i(m−n)θ

]
= e1/2 ρ2 cos(2 θ) cos

(
1/2 ρ2 sin (2 θ) + θ (m− n)

)
,

and, indeed, if we set θ = π + δ, we recover the same expression. The two peaks are
equivalent. Hence a factor 2. The choice of θ0 is the same as for In.
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3.2. Approach 2: Asymptotic expansion of I(m,n)
n! using its explicit expression. We

use again ln(`!) as given by (6). We successively obtain

m =
√

n + x 4
√

n− 1
2
− x

2 4
√

n
+

3
8
√

n
+

3x
16n3/4 +O

(
1
n

)
,

(n−m)/2 =
n
2
−
√

n
2
− x 4
√

n
2

+
1
4
+

x
4 4
√

n
− 3

16
√

n
− 3x

32n3/4 +O
(

1
n

)
,

ln(m!) =
(
−1 +

ln(n)
2

)√
n +

x ln (n) 4
√

n
2

+
x2

2
+

ln (2)
2

+
ln (π)

2

−
x
(
x2 + 3/2 ln (n)

)
6 4
√

n
+
−1− 12 x2 + 2 x4 + 9/2 ln (n)

24
√

n
x
(
100− 12 x4 + 45/2 ln (n) + 60 x2)

240n3/4 +O
(

1
n

)
,

ln(((n−m)/2)!) =
−1− ln(2) + ln(n)

2
+

(ln(2)− ln(n))
√

n
2

+
x(ln(2)− ln(n)) 4

√
n

2

+
1
4
− ln (2)

4
+

3 ln (n)
4

+
ln((π)

2
− x (ln (2)− ln (n)− 2)

4 4
√

n
+O

(
1√
n

)
.

This leads to

I(m, n)
n!

= exp
[(
− ln(n)

2
+ 1/2

)
n +
√

n− ln (2)
2
− 1

4
− x2

2

− 3 ln (n)
4

− ln (π) +
x
(
−3 + x2)
6 4
√

n
+O

(
1√
n

)]
.

This fits with the result of Approach 1 but more initial asymptotic precision is needed
in Approach 2 in order to obtain the same final precision in the coefficient (O

(
1

n3/4

)
)

as in Approach 1. We only obtain a O
(

1
n1/4

)
precision. This is due to the fact that we

use two ln(`!) asymptotics in Approach 2 instead of one in Approach 1.

Online Journal of Analytic Combinatorics, Issue 12 (2017), #10



10 GUY LOUCHARD

3.3. Distribution of Jn. So, finally

I(m, n)
In

= 2F2/F1 exp(E2 − E1),

exp(E2 − E1) =
1√

2πn1/4
e−x2/2F3,

F3 := 1 +
x
(
x2 − 3

)
6 4
√

n
+

12 + 27 x2 − 12 x4 + x6

72
√

n

+
x
(
−1620− 2385 x2 + 999 x4 − 135 x6 + 5 x8)

6480n3/4 +O
(

1
n

)
,

I(m, n)
In

=
2√

2πn1/4
e−x2/2F4,

F4 := F2/F1F3 = 1 +
x
(
x2 − 3

)
6 4
√

n
+

30 + 27 x2 − 12 x4 + x6

72
1√
n

+
x
(
810− 2115 x2 + 999 x4 − 135 x6 + 5 x8)

6480n3/4 +O
(

1
n

)
.

This leads to the local limit theorem 3.1
Of course more terms can be mechanically computed, but the expressions become

much more intricate.
To check the quality of our asymptotics, we have chosen n = 2000. This gives M =

44.22968229 . . . , σ = 6.613262555 . . ., and a range m ∈ [30, 58].

Figure 1 shows I(m, n)/In (circle), a first-order asymptotic 2 e−x2/2
√

2πσ
(line) and the as-

ymptotic of Equ. (4) (dashed line). This fit is better. Note that m and n do have the
same parity: n−m is even. I(m, n) = 0 for m odd in our example.

Figure 2 gives the quotient of I(m, n)/In and the asymptotic 2 e−x2/2
√

2πσ
(box) as well as

the quotient of I(m, n)/In and the asymptotic Equ. (4) (circle). This last asymptotic is
of course more precise than the first one.

4. Large deviation m = n− nα, 0 < α < 1

The multiseries’ scale is here n� nα � 1/ε if α > 1/2 and n� 1/ε� nα if α < 1/2.
It appears that the exact expression (1) is suitable in this case. We have the following
theorem:
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and

0

0.02

0.04

0.06

0.08

0.1

0.12

 

30 35 40 45 50 55

m

Figure 1. I(m, n)/In (circle), a first-order asymptotic 2 e−x2/2
√

2πσ
(line) and the

asymptotic of Equ. (4) (dashed line)

Theorem 4.1. The asymptotic expression of the I(m, n) for large deviation m = n− nα, 0 <
α < 1 is given, with ε := nα−1, by

I(m, n)
n!

=
1√
πnα

(
1− 1

6nα
+

1
72n2α

+O
(

1
n3α

))
×

× 1√
2πn(1− ε)

[
1− 1

12 (1− ε) n
+

1

288 (1− ε)2 n2
+O

(
1
n3

)]
×

× exp
[(

1
2
− α ln(n)

2
+ ln(n)

)
nα + (− ln(n) + 1) n

−n2α−1

2
− n3α−2

6
− n4α−3

12
− n5α−4

4
+O

(
n6α−5

)]
.(7)

We set

m = n(1− ε),

(n−m)/2 =
nα

2
,

ln(`!) = −`+ ` ln (`) +
ln (2π`)

2
+

1
12`
− 1

360`3 +O
(

1
`4

)
.
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0.9
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0.94

0.96

0.98

1

1.02

1.04

1.06

 

30 35 40 45 50 55

m

Figure 2. Quotient of I(m, n)/In and the asymptotic 2 e−x2/2
√

2πσ
(box) as well

as the quotient of I(m, n)/In and the asymptotic Equ. (4) (circle)

This leads to

ln(m) = ln(n)− ε− ε2

2
− ε3

3
− ε4

4
+O

(
ε5
)

,

ln((n−m)/2) = α ln(n)− ln(2),

ln(((n−m)/2)!) = −nα

2
+

nα (α ln(n)− ln (2))
2

+ ln (π nα) +
1

6nα
− 1

45n3α
+O

(
1

n4α

)
Now, we have

ln(m!) = −n + nα + n(1− ε) ln(m) +
ln (2πm)

2
+

1
12m

− 1
360m3 +O

(
1

m4

)
.

We use the substitution

nεj = njα−(j−1),
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we have

n(1− ε) ln(m) = n ln(n)− nα − nα ln(n) +
n2α−1

2
+

n3α−2

6
+

n4α−3

12
+

n5α−4

4
+O

(
n6α−5

)
,

ln(m!) = −n + n ln(n)− nα ln(n) +
n2α−1

2
+

n3α−2

6
+

n4α−3

12
+

n5α−4

4
+O

(
n6α−5

)
+

ln (2 π n (1− ε))

2
+

1
12n (1− ε)

− 1

360n3 (1− ε)3 +O
(

1
n4

)
,

This leads to

I(m, n)
n!

= exp
[
−nα ln(2)

2
− ln(m!)− ln(((n−m)/2)!)

]
= exp

[
−nα ln (2)

2
+ n− n ln(n) + nα ln(n)− n2α−1

2
− n3α−2

6
− n4α−3

12
− n5α−4

4

+O
(

n6α−5
)
− ln (2 π n (1− ε))

2
− 1

12n (1− ε)
+

1

260n3 (1− ε)3 +O
(

1
n4

)
+

nα

2
− nα (α ln(n)− ln (2))

2
− ln (π nα)− 1

6nα
+

1
45n3α

+O
(

1
n4α

) ]
= exp(E3)F5,

F5 :=
1√
πnα

(
1− 1

6nα
+

1
72n2α

+O
(

1
n3α

))
×

× 1√
2πn(1− ε)

[
1− 1

12 (1− ε) n
+

1

288 (1− ε)2 n2
+O

(
1
n3

)]
,

E3 :=
(

1
2
− α ln(n)

2
+ ln(n)

)
nα + (− ln(n) + 1) n

− n2α−1

2
− n3α−2

6
− n4α−3

12
− n5α−4

4
+O

(
n6α−5

)
.

This leads to Theorem 4.1.
Note that we prefer to keep two separate factors in (7): one in powers of nα and one

in powers of n instead of mixing them.
Let us analyze the importance of the terms in E3. We have two sets: the set A of

dominant terms, which stay in the exponent and the set B of small terms, leading to a
coefficient of type (1 + ∆), with ∆ small. The property of each term may depend on α.
In E3, each term njα−(j−1) is in A if j > 1

1−α and in B otherwise. We finally mention that
our non-central range is not sacred: other types of ranges can be analyzed with similar
methods.
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To check the quality of our asymptotics, we have first chosen n = 2000 and a range
α ∈ (0.125, 0.45). This corresponds to the range m ∈ (1968, 1998).

Figure 3 gives ln(I(n, m)/n!) (circle) and ln(Equ.(7))(line) with the substitutions nα =
n−m, ε = (n−m)/n, α = ln(n−m)/ ln(n), n2α−1 = (n−m)2/n, . . ..

–13180

–13160

–13140

–13120

–13100

–13080

–13060

–13040

–13020

 

1970 1975 1980 1985 1990 1995

m

Figure 3. n = 2000, ln(I(n, m)/n!) (circle) and ln(Equ.(7)) (line)

Figure 4 gives the quotient of ln(I(n, m)/n!) and ln(Equ.(7)) (circle).
Another way for checking the quality is to fix α. We choose α = 1/4 and n ∈

(1950, 2000). Of course, we must use an integer value for m: m = bn− nα + 1c. Hence,
in (7), we use α as the root of n− nα −m = 0.

Figure 5 gives ln(I(n, m)/n!) (circle) and ln(Equ.(7)) (line). The relative error is of
order 5.10−4.

Figure 6 gives the quotient of ln(I(n, m)/n!) and ln(Equ.(7)) (circle).
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