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Abstract. We define a new class of generating function transformations related to poly-
logarithm functions, Dirichlet series, and Euler sums. These transformations are given
by an infinite sum over the jth derivatives of a sequence generating function and sets of
generalized coefficients satisfying a non-triangular recurrence relation in two variables.
The generalized transformation coefficients share a number of analogous properties with
the Stirling numbers of the second kind and the known harmonic number expansions
of the unsigned Stirling numbers of the first kind.

We prove a number of properties of the generalized coefficients which lead to new re-
currence relations and summation identities for the k-order harmonic number sequences.
Other applications of the generating function transformations we define in the article
include new series expansions for the polylogarithm function, the alternating zeta func-
tion, and the Fourier series for the periodic Bernoulli polynomials. We conclude the
article with a discussion of several specific new “almost” linear recurrence relations
between the integer-order harmonic numbers and the generalized transformation coef-
ficients, which provide new applications to studying the limiting behavior of the zeta
function constants, ζ(k), at integers k ≥ 2.

1. Introduction

The Stirling numbers of the second kind, {n
k}, are defined for n, k ≥ 0 by the triangular

recurrence relation [6, §6.1]1

(1)
{

n
k

}
= k

{
n− 1

k

}
+

{
n− 1
k− 1

}
+ [n = k = 0]δ .

It is also known, or at least straightforward to prove by induction, that for any sequence,
〈gn〉, whose formal ordinary power series (OGF) is denoted by G(z), and natural num-
bers m ≥ 1, we have a generating function transformation of the form [6, cf. §7.4]2

(2) ∑
n≥0

nmgnzn =
m

∑
j=0

{
m
j

}
zjG(j)(z).
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2 Variants of (2) can be found in [9, §26.8(v)]. A special case of the identity for fn ≡ 1 appears in

[6, eq. (7.46); §7.4]. Other related expansions for converting between powers of the differential operator
D and the operator ϑ := zD are known as sums involving the Stirling numbers of the first and second
kinds [6, Ex. 6.13; cf. §6.5]. The particular identity that [zn]

(
(zD)kF(z)

)
= nk fn is stated in [13, §2.2].

1



2 MAXIE D. SCHMIDT

We seek to study the properties of a related set of coefficients that provide the corre-
sponding negative-order generating function transformations of the form

(3) ∑
n≥1

gn

nk zn = ∑
j≥1

{
k + 2

j

}
∗
zjG(j)(z),

for integers k > 0. We readily see that the generalized coefficients, {k
j}∗, are defined by

a two-index, non-triangular recurrence relation of the form{
k
j

}
∗
= −1

j

{
k

j− 1

}
∗
+

1
j

{
k− 1

j

}
∗
+ [k = j = 1]δ(4)

= ∑
1≤m≤j

(
j

m

)
(−1)j−m

j!mk−2 ,

which provides a number of new properties, identities, and sequence applications in-
volving these numbers.

We likewise obtain a number of new, interesting relations between the r-order har-
monic numbers, H(r)

n = ∑n
k=1 k−r and H(r)

n (t) = ∑n
k=1 tk/kr, by their corresponding ordi-

nary generating functions, Lir(z)/(1− z) and Lir(tz)/(1− z), through our study of the
generalized transformation coefficients, {k

j}∗, in (4). Most of the series expansions for
special functions we define through (3) are new, and moreover, provide rational partial
series approximations to the infinite series in z. Section 2.1 provides the details to a
combinatorial proof of the zeta series transformations defined by (3) and (4).

Examples. The Dirichlet-generating-function-like series defined formally by (3) can be
approximated up to any finite order u ≥ 1 by the terms of typically rational truncated
Taylor series. We cite a few notable examples of these truncated ordinary generating
functions in the following equations where k ∈ N, a, b, r, t ∈ R, and ωa = exp(2πı/a)
denotes the primitive ath root of unity which has a distinct notation from the formal series
variable w indexing the sums in the first six formulas below:

∑
1≤n≤u

zn

nk = [wu]

(
u

∑
j=1

{
k + 2

j

}
∗

(wz)j j!
(1− wz)j+1(1− w)

)
(5a)

∑
1≤n≤u

zn

nkn!
= [wu]

(
u

∑
j=1

{
k + 2

j

}
∗

(wz)jewz

(1− w)

)
(5b)

∑
1≤n≤u

H(k)
n zn = [wu]

(
u

∑
j=1

{
k + 2

j

}
∗

(wz)j j!
(1− wz)j+2(1− w)

)
(5c)

∑
1≤n≤u

(
n

∑
m=1

tm

mk

)
zn = [wu]

(
u

∑
j=1

{
k + 2

j

}
∗

(wtz)j j!
(1− wtz)j+1(1− wz)(1− w)

)
(5d)
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∑
1≤n≤u

(
n

∑
m=1

rm

mkm!

)
zn = [wu]

(
u

∑
j=1

{
k + 2

j

}
∗

(wrz)jewrz

(1− wz)(1− w)

)
(5e)

∑
1≤n≤u

H(k)
n

n!
zn = [wu]

(
u

∑
j=1

{
k + 2

j

}
∗

(wz)j

(j + 1)
ewz(j + 1 + wz)

(1− w)

)
(5f)

∑
1≤n≤u

zn

(an + b)s +
[b > 0]δ

bs = [tau+b]

(
a−1

∑
m=0

au+b

∑
j=1

{
s + 2

j

}
∗

ω−mb
a zb/a(

(
tz1/a)j j!

a
(
(1−ωm

a tz1/a
)j+1

(1− t)

)
.

(5g)

These expansions follow easily as consequences of a few generating function opera-
tions and transformation results. First, for any fixed scalar t, the jth derivative of the
geometric series satisfies

d(j)

dz(j)

[
1

(1− tz)

]
=

tj j!
(1− tz)j+1 ,

which implies the finite and infinite series variants of (5a) in the formulas listed above.
We also have an integral transform that converts the ordinary generating function, F(z),
of any sequence into its corresponding exponential generating function, F̂(z), according
to [6, p. 566]

F̂(z) =
1

2π

∫ +π

−π
F
(

ze−ıϑ
)

eeıϑ
dϑ.

This integral transformation together with a well-known expansion of generating func-
tions for the binomial coefficients shows that

(6)
1

2π

∫ +π

−π

(
wze−ıϑ)j

(1− wze−ıϑ)
j+2 eeıϑ

dϑ =
(wz)jewz

(j + 1)!
(j + 1 + wz) ,

which implies the second to last expansion in (5f). Lastly, there is a known “series multi-
section” generating function transformation over arithmetic progressions of a sequence
for integers a > 1, b ≥ 0 of the form [8, §1.2.9]

∑
n≥0

fan+bzan+b = ∑
0≤m<a

ω−mr
a
a

F (ωm
a z)

Since the geometric series ordinary generating function, and its jth derivatives, are
always rational, we may also give similar statements about the partial sums of the
Euler sum generating functions of the forms studied in [4, 2, 12].

Comparison to Known Series. For comparison, we summarize a pair of known series
identities for the polylogarithm function, Lis(z), and the modified Hurwitz zeta function,

Online Journal of Analytic Combinatorics, Issue 12 (2017), #02
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Φ(z, s, α, β) = ∑n≥1 zn/(αn + β)s = α−szΦ(z, s, β/α + 1), as follows [9, §25.12(ii), 25.14]
[7, eq. (6); Thm. 2.1; §2]:

Lis(z) = ∑
k≥0

(
− z

1− z

)k+1

∑
0≤m≤k

(
k
m

)
(−1)m+1

(m + 1)s(7)

Φ(z, s, α, β) = ∑
k≥0

(
− z

1− z

)k+1

∑
0≤m≤k

(
k
m

)
(−1)m+1

(αm + α + β)s .

The new generalized coefficients, {k
j}∗, defining the transformations in (3) satisfy sev-

eral key properties and generating functions analogous to those of the Stirling numbers
of the second kind, and are closely-related to the known harmonic number expansions
of the unsigned triangle of the Stirling numbers of the first kind [1, 10]. We explore several
initial properties and relations of these coefficients in the next section.

2. Initial Properties, Ordinary Generating Functions, and Relations to the

Stirling Numbers

2.1. Proof of the Transformation Identity in (3). We first prove that the recurrence
relation in (4) holds for the generalized transformation coefficients in (3), which is then
used to extrapolate new results providing summation and harmonic number identities
for these sequences.

Proof of (4). The proof proceeds by an inductive argument similar to the proof that can
be given from (1) for the generating function transformations involving the Stirling
numbers of the second kind cited in the introduction. We first observe that

∑
n≥1

gn

nk zn = ∑
n≥1

(n · gn)

nk+1 zn

for all k ∈ N. Since the ordinary generating function for the sequence, 〈ngn〉, is given
by zG′(z), and the jth derivative of zG′(z) is jG(j)(z) + zG(j+1)(z), we may write that

∑
j≥1

{
k + 2

j

}
∗
zjG(j)(z) = ∑

j≥1

{
k + 3

j

}
∗
zj
(

jG(j)(z) + zG(j+1)(z)
)

= ∑
j≥2

zj
(

j
{

k + 3
j

}
∗
+

{
k + 3
j− 1

}
∗

)
+ [k = j = 1]δ .

We then conclude that the non-triangular recurrence relation in (4) defines the series
transformation coefficients in (3). �

2.2. Exact Expansions of the Transformation Coefficients. The recurrence relation in
(4) leads us to compute the first few terms of these sequences given in Table 1 and Table
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k
j

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 −1

2
1
6 − 1

24
1

120 − 1
720

1
5040 − 1

40320

3 0 1 −3
4

11
36 − 25

288
137
7200 − 49

14400
121

235200 − 761
11289600

4 0 1 −7
8

85
216 − 415

3456
12019
432000 − 13489

2592000
726301

889056000 − 3144919
28449792000

5 0 1 −15
16

575
1296 −

5845
41472

874853
25920000 − 336581

51840000
129973303

124467840000 − 1149858589
7965941760000

6 0 1 −31
32

3661
7776 −

76111
497664

58067611
1555200000 −

68165041
9331200000

187059457981
156829478400000 −

3355156783231
20074173235200000

Table 1. A Table of the Generalized Coefficients {k
j}∗

k
j

0 1 2 3 4 5 6 7 8

0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0
2 0 1 1 1 1 1 1 1 1
3 0 1 3

2
11
6

25
12

137
60

49
20

363
140

761
280

4 0 1 7
4

85
36

415
144

12019
3600

13489
3600

726301
176400

3144919
705600

5 0 1 15
8

575
216

5845
1728

874853
216000

336581
72000

129973303
24696000

1149858589
197568000

6 0 1 31
16

3661
1296

76111
20736

58067611
12960000

68165041
12960000

187059457981
31116960000

3355156783231
497871360000

Table 2. A Table of the Scaled Coefficients {k
j}∗ × (−1)j−1 · j!

2. We are also able to compute the next explicit formulas for variable k and fixed small
special cases of j ≥ 1 as follows:{

k
1

}
∗
= [k ≥ 1]δ(8) {

k
2

}
∗
= −

(
1− 21−k

)
[k ≥ 2]δ{

k
3

}
∗
=

1
2

(
1− 2 · 21−k + 31−k

)
[k ≥ 2]δ{

k
4

}
∗
= −1

6

(
1− 3 · 21−k + 3 · 31−k − 41−k

)
[k ≥ 2]δ
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{
k
5

}
∗
=

1
24

(
1− 4 · 21−k + 6 · 31−k − 4 · 41−k + 51−k

)
[k ≥ 2]δ .

The inductive proof of the full explicit summation formula expanded in (10) we obtain
from the special cases above is left as an exercise to the reader. We compare this formula
to the analogous identity for the Stirling numbers of the second kind as follows [9,
§26.8]: {

k
j

}
=

j

∑
m=1

(
j

m

)
(−1)j−mmk

j!
(9)

{
k + 2

j

}
∗
=

j

∑
m=1

(
j

m

)
(−1)j−m

j! mk .(10)

For further comparison, observe that the forms of both (9) and (10) lead to the following
similar pair of ordinary generating functions in z with respect to the upper index k > 0
and fixed j ∈ Z+ [9, §26.8(ii)]:

∞

∑
k=0

{
k
j

}
zk =

zj

(1− z)(1− 2z) · · · (1− jz)
(11)

∞

∑
k=0

{
k
j

}
∗
zk =

(
(−1)j+1z2

(1− z)(2− z) · · · (j− z)

)
[j ≥ 2]δ +

(
z

(1− z)

)
[j = 1]δ .

We also compare the generalized coefficient formula in (10) and its generating function
representation in (11) to the Nörlund-Rice integral of a meromorphic function f over a
suitable contour given by [5]

∑
1≤m≤j

(
j

m

)
(−1)j−m f (m) =

j!
2πı

∮ f (z)
z(z− 1)(z− 2) · · · (z− j)

dz.

Corollary 2.1 (Harmonic Number Formulas). For j ∈ N, the following formulas provide
expansions of the coefficients from (4) and (10) at the fixed cases of k ∈ [2, 6] ⊆N:{

2
j

}
∗
=

(−1)j−1

j!{
3
j

}
∗
=

(−1)j−1

j!
Hj{

4
j

}
∗
=

(−1)j−1

2j!

(
H2

j + H(2)
j

)
{

5
j

}
∗
=

(−1)j−1

6j!

(
H3

j + 3HjH
(2)
j + 2H(3)

j

)
{

6
j

}
∗
=

(−1)j−1

24j!

(
H4

j + 6H2
j H(2)

j + 3
(

H(2)
j

)2
+ 8HjH

(3)
j + 6H(4)

j

)
.(12)
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Proof. Both the Mathematica software suite and the package Sigma3 are able to obtain
these formulas for small special cases [11]. Larger special cases of k ≥ 7 are easiest to
compute by first generating a recurrence corresponding to the sum in (10), and then
solving the resulting non-linear recurrence relation with the Sigma package routines.

A more general heuristic harmonic-number-based recurrence formula that generates
these expansions for all k ≥ 2 is suggested along the lines of the analogous formulas
for the Stirling numbers of the first kind in the references as [1, §2]

(13)
{

k + 2
j

}
∗
= ∑

0≤m<k

H(m+1)
j

k

{
k + 1−m

j

}
∗
+

(
(−1)j−1

j!

)
[k = 0]δ .

A short proof of the identity in (13) for all k ≥ 1 is given through the exponential
of a generating function for the r-order harmonic numbers and properties of the Bell
polynomials, Yn(x1, x2, . . . , xn), in [3]. �

k t(k)0 (j) t(k)1 (j)
2 0 2
3 0 2Hj

4 H(2)
j H2

j

5 HjH
(2)
j

1
3

(
H3

j + 2H(3)
j

)
6 1

2

(
H2

j H(2)
j + H(4)

j

)
1

12

(
H4

j + 3
(

H(2)
j

)2
+ 8HjH

(3)
j

)
7 1

6

(
H3

j H(2)
j + 2H(2)

j H(3)
j + 3HjH

(4)
j

)
1

60

(
H5

j + 15Hj

(
H(2)

j

)2
+ 20H2

j H(3)
j + 24H(5)

j

)
Table 3. The Harmonic Number Remainder Terms in (14) and (15)

Example 2.2 (Comparison of the Formulas). The similarities between the harmonic
number expansions of the Stirling numbers of the first kind and the related expansions
of (10) given in (12) suggest another interpretation for the generalized coefficient rep-
resentations. More precisely, for k ∈ N, let the respective functions t(k)0 (j) and t(k)1 (j)
denote the remainder terms in the forms of the coefficients in (10) defined by the fol-
lowing pair of equations:

t(k+2)
0 (j) =

{
k + 2

j

}
∗
· (−1)j−1 · j!−

[
j + 1
k + 1

]
1
j!

(14)

t(k+2)
1 (j) =

{
k + 2

j

}
∗
· (−1)j−1 · j! +

[
j + 1
k + 1

]
1
j!

.

3 https://www.risc.jku.at/research/combinat/software/Sigma/

Online Journal of Analytic Combinatorics, Issue 12 (2017), #02
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The harmonic number formulas for these generalized coefficient sums are recovered
from the remainder terms in (14) and the Stirling number expansions as{

k + 2
j

}
∗
=

(−1)j−1

j!

([
j + 1
k + 1

]
1
j!
+ t(k+2)

0 (j)
)

(15) {
k + 2

j

}
∗
=

(−1)j

j!

([
j + 1
k + 1

]
1
j!
− t(k+2)

1 (j)
)

.

The heuristic method identified in the proof of Corollary 2.1 allows for the form of
both functions to be computed for the next several special case formulas extending the
expansions cited in the corollary. For comparison, a table of the first several of these
remainder functions is provided in Table 3 for 2 ≤ k ≤ 7.

3. Recurrence Relations and Other Identities for Harmonic Number

Sequences

3.1. Finite Sum Expansions of the Transformation Coefficients.

Proposition 3.1 (Integer-Order Harmonic Number Identities). For natural numbers k ≥
1, the generalized coefficients in (4) satisfy the following identities:{

k + 2
j

}
∗
= (j + 1)

j−1

∑
i=0

(−1)j−1−iH(k)
i+1

(j− 1− i)!(i + 2)!
(16)

{
k + 2

j

}
∗
= (j + 1)

j−1

∑
i=0

(−1)j−1−i

(j− 1− i)!

 H(k)
i+2

(i + 2)!
− 1

(i + 2)!(i + 2)k

 .

Proof. Let the coefficient terms, cj(i), be defined as in the next equation.

(17) cj(i) :=
(−1)j−i

i!(j− i)!

It follows from (10) that{
k + 2

j

}
∗
=

j−1

∑
i=0

(
cj(j− i)− cj(j + 1− i)

)
H(k)

j−i

=
j−1

∑
i=0

(
(−1)i

i!(j− i)!
+

(−1)ii
i!(j + 1− i)!

)
H(k)

j−i

= (j + 1)
j−1

∑
i=0

(−1)iH(k)
j−i

i!(j + 1− i)!

= (j + 1)
j−1

∑
i=0

(−1)j−1−iH(k)
i+1

(j− 1− i)!(i + 2)!
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= (j + 1)
j−1

∑
i=0

(−1)j−1−i

(j− 1− i)!(i + 2)!

(
H(k)

i+2 −
1

(i + 2)k

)
. �

Proposition 3.2 (Formulas Involving Real-Order Harmonic Numbers). For k ∈ Z+ and
real r ≥ 0, the generalized coefficients in (4) satisfy the following identities:{

k + 2
j

}
∗
=

j−1

∑
i=0

(−1)j−1−iH(k−r)
i+1

(j− 1− i)!(i + 1)!

(
1

(i + 1)r +
(j− 1− i)
(i + 2)r+1

)
{

k + 2
j

}
∗
=

j−1

∑
i=0

(−1)j−1−iH(k−r)
i+1

(j− 1− i)!(i + 1)!

(
1

(i + 1)r −
1

(i + 2)r +
(j + 1)

(i + 2)r+1

)
.

Proof. Let the coefficient terms, cj(i), be defined as in (17). It follows from (10) that{
k + 2

j

}
∗
=

j−1

∑
i=0

(
cj(j− i)
(j− i)r −

cj(j + 1− i)
(j + 1− i)r

)
H(k−r)

j−i

=
j−1

∑
i=0

(−1)iH(k−r)
j−i

i!(j− i)!

(
1

(j− i)r +
i

(j + 1− i)r+1

)
.

The identities in the proposition follow similarly by interchanging the summation in-
dices in the last equation. �

3.2. Exponential Harmonic Number Sums. The Mathematica Sigma package [11] is
able to obtain the formulas given in Corollary 2.1 by a straightforward procedure. The
package is also able to verify the related results that

j

∑
i=1

Hi

i!
(−1)j−i

(j− i)!
=

(−1)j−1

j j!
(18)

j

∑
i=1

H(2)
i
i!

(−1)j−i

(j− i)!
=

(−1)j−1

j j!
Hj

j

∑
i=1

H(3)
i
i!

(−1)j−i

(j− i)!
=

(−1)j−1

2j j!

(
H2

j + H(2)
j

)
j

∑
i=1

H(4)
i
i!

(−1)j−i

(j− i)!
=

(−1)j−1

6j j!

(
H3

j + 3HjH
(2)
j + 2H(3)

j

)
,

and then that

Hj

j!
=

j

∑
i=1

(−1)i−1

i i!(j− i)!
(19)

H(2)
j

j!
=

j

∑
i=1

(−1)i−1

i i!(j− i)!
Hi

Online Journal of Analytic Combinatorics, Issue 12 (2017), #02
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H(3)
j

j!
=

j

∑
i=1

(−1)i−1

2i i!(j− i)!

(
H2

i + H(2)
i

)
H(4)

j

j!
=

j

∑
i=1

(−1)i−1

6i i!(j− i)!

(
H3

i + 3HiH
(2)
i + 2H(3)

i

)
,

by considering the generating functions over each side of the equations in (18). An
alternate, direct approach using the capabilities of Sigma for the special cases of the
sums in (19) is also used to obtain the closed-forms of these sums.

Proposition 3.3 provides a generalization of the coefficient sums given by these spe-
cial cases. The particular expansions of the previous identities and their generalized
forms in the proposition immediately imply relations between the exponential gener-
ating functions of the r-order harmonic numbers and of the generalized coefficients in
(4).

Proposition 3.3. For k ∈N and j ∈ Z+, the generalized coefficients and exponential harmonic
numbers are related through the following sums:{

k + 2
j

}
∗
· 1

j
=

j

∑
m=0

H(k+1)
m

m!
(−1)j−m

(j−m)!
(20)

H(k+1)
j

j!
=

j

∑
i=1

{
k + 2

i

}
∗
· 1

i(j− i)!
.(21)

Proof of Equation (6). We first notice that the integral representation for the reciprocal
gamma function cited in the introduction is restated in the following form for all inte-
gers n ≥ 0:

1
2π

∫ π

−π
e−ınteeıt

dt =
1
n!

.

Then by expanding the left-hand-side of (6) as a generating function for the binomial
coefficients, (n+j+1

j+1 ), we see that

1
2π

∫ +π

−π

(
wze−ıϑ)j

(1− wze−ıϑ)
j+2 eeıϑ

dϑ =
1

2π

∫ +π

−π

(
∑
n≥0

(j + 1 + n)!
(j + 1)! · n!

(
wze−ıt)n+j

)
eeıt

dt

=
(wz)j

(j + 1)!
× ∑

n≥0

(j + 1 + n)
n!

(wz)n

=
(wz)j

(j + 1)!
×
(
(j + 1)ewz + ∑

n≥1

(wz)n

(n− 1)!

)

=
(wz)jewz

(j + 1)!
(j + 1 + wz). �
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Proof. We recall the series for the exponential harmonic numbers cited in (5f) of the
introduction in the limiting case where u→ ∞ given by

H(k+1)
n

n!
= [zn]

(
∑
j≥1

{
k + 3

j

}
∗
zjez

(
1 +

z
j + 1

))
.

The formula stated in (5f) follows easily from (5a) and the proof of (6) given above.
Next, we see that the generating function, Ĥk(z), of the k-order exponential harmonic
numbers, H(k)

n /n!, is given by

Ĥk+1(z)e−z = ∑
j≥1

{
k + 3

j

}
∗
zj
(

1 +
z

j + 1

)

= ∑
j≥1

{
k + 3

j

}
∗
zj + ∑

j≥2

{
k + 3
j− 1

}
∗

zj

j

= ∑
j≥1

{
k + 2

j

}
∗

zj

j
,

by (4), which implies the second identity in (21). The proof of either (20) or (21) im-
plies the result in the other equation by a formal power series, or generating function
convolution, argument for establishing the forms of (19) from the first set of results in
(18) (and vice versa). �

Remark 3.4 (Functional Equations Resulting from the Binomial Transform). Notice that
the results in (19) imply new forms of functional equations between the polylogarithm
functions, Lis(z)/(1− z), when s = 2, 3. For example, by integrating the generating
function for the first-order harmonic numbers and applying the binomial transform,
the second identity in the previous equations leads to the known functional equation
for the dilogarithm function, Li2(z), providing that [9, §25.12(i)] [14]

Li2(z) = −
1
2

Log(1− z)2 − Li2

(
− z

1− z

)
.

Similarly, the third identity in (19) implies a new functional equation between products
of the natural logarithm, the dilogarithm function, and the trilogarithm function, Li3(z),
in the following form (cf. Landen’s formula for the trilogarithm):

Li3(z) = −
1
6

Log(1− z)3 +
1
2

Log(1− z)2 Log
(
− z

1− z

)
− Log(1− z)Li2

(
1

1− z

)
− Log(1− z)Li2

(
− z

1− z

)
− Li3

(
1

1− z

)
− Li3

(
− z

1− z

)
− ζ(3).

Online Journal of Analytic Combinatorics, Issue 12 (2017), #02
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Remark 3.5 (Exponential Generating Functions for Harmonic Numbers). The first-order
harmonic numbers, Hn ≡ H(1)

n , have an explicit closed-form exponential generating func-
tion in z given by [1, cf. §5]

(22) Ĥ1(z) :=
∞

∑
n=0

Hn
zn

n!
= (−ez)

∞

∑
k=1

(−z)k

k! k
≡ ez (γ + Γ(0, z) + Log(z)) .

where γ denotes Euler’s gamma constant [9, §5.2(ii)] and Γ(a, z) denotes the incomplete
gamma function [9, §8]. No apparent simple analogs to the closed-form function on
the right-hand-side of (22) are known for the exponential harmonic number generating
functions, Ĥk(z), when k ≥ 2.

However, we are able to easily relate these exponential generating functions to the
generating functions of the sequence, {k

j}∗, by applying Proposition 3.3. In particular, if

we define the ordinary generating function of the sequences, {k
j}∗, over j ≥ 1 for fixed

k by S̃k,∗(z), the proposition immediately implies that (see Section 4.2)

Ĥk+1(z) = ez
∫ z

0

S̃k+2,∗(t)
t

dt.

We compare these integral formulas to the somewhat simpler formal series expansion
for the exponential harmonic numbers, Ĥ(r)

n = H(r)
n /n!, in the example from (5f) of the

introduction in the form of

Ĥr(z) = ∑
n≥1

Ĥ(r)
n zn = ∑

j≥1

{
k + 2

j

}
∗

zjez

(j + 1)
(j + 1 + z) .

Other relations between the exponential harmonic numbers, the generalized coeffi-
cients, {k+2

j }∗, and the sequences, M(d)
k+1(z), are considered below in Section 4.2.

3.3. New Recurrences and Expansions of the k-Order Harmonic Numbers in Powers
of n.

Remark 3.6 (Formulas for Integral Powers of n). For positive n ∈N, the following finite
sums define the forms of the integral powers of n, given by nk and n−k for k ∈ Z+,
respectively in terms of sums over the Stirling numbers of the second kind and the
generalized transformation coefficients from (4):

nk =
k

∑
j=1

{
k
j

}
n!

(n− j)!
(23)

1
nk =

n

∑
j=1

{
k + 2

j

}
∗

n!
(n− j)!

.(24)
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A formula related to (23) cited in the references [9, eq. (26.8.34); §26.8(v)] is re-stated
as follows for scalar-valued x 6= 0, 1:

n

∑
j=0

jkxj =
k

∑
j=0

{
k
j

}
xj d(j)

dx(j)

[
1− xn+1

1− x

]
.

For fixed k ∈ N and n ≥ 0, these partial sums can also be expressed in closed-form
through the Bernoulli numbers, Bn, defined as in [9, §] [6, §6.5] by

Sk(n) :=
n−1

∑
j=0

jk =
k

∑
m=0

(
k + 1

m

)
Bmnk+1−m

(k + 1)
.

For k ∈ Z+ and n ∈ N, the integer-order harmonic number sequences, H(k)
n , can then

be defined recursively in terms of the generalized coefficient forms as follows when
n ≥ 1 and where H(k)

0 ≡ 0 for all k ∈ Z+:

H(k)
n = H(k)

n−1 +
1
nk [n ≥ 1]δ

= H(k)
n−1 +

n

∑
j=1

{
k + 2

j

}
∗

n!
(n− j)!

.(25)

We are now concerned with applying the results in the previous propositions to (24)
in order to obtain new recurrence relations and sums for the r-order harmonic number
sequences.

Corollary 3.7 (Recurrences for the k-Order Harmonic Numbers). Suppose that k ∈ Z+

and let r ∈ [0, k) ⊆ R. The k-order harmonic numbers satisfy each of the following recurrence
relations:

H(k)
n = H(k)

n−1 + ∑
1≤i≤j≤n

(
n
j

){
k + 1

i

}
∗
(−1)j−i(i− 1)!

H(k)
n = H(k)

n−1 + ∑
1≤m≤i≤j≤n

(
n
j

)(
i
m

)
(−1)j+mH(k)

m

H(k)
n = H(k)

n−1 + ∑
0≤i<j≤n

(
n
j

)(
j

i + 1

)
(−1)j−1−iH(k−r)

i+1

(
1

(i + 1)r −
1

(i + 2)r +
(j + 1)

(i + 2)r+1

)
.

Proof. The first recurrence relation results by applying (25) to the identity{
k + 2

j

}
∗
=

1
j! ∑

1≤i≤j

{
k + 1

i

}
∗
(−1)j−i(i− 1)!.

The second and third identities are similarly obtained from (25) respectively combined
with Proposition 3.3 and Proposition 3.2. �

Online Journal of Analytic Combinatorics, Issue 12 (2017), #02
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Proposition 3.8 (Formulas for the k-Order Harmonic Numbers in Powers of n). Let
k ∈ N and r ∈ [0, 1) ⊆ R. For each n ∈ N, the k-order harmonic numbers are given
respectively through the next finite sums involving positive integer powers of n + 1.

H(k)
n = ∑

0≤j≤n

(
∑

0≤m≤j+1

[
j + 1

m

]{
k + 2

j

}
∗

(−1)j+1−m(n + 1)m

(j + 1)

)
(26)

Proof. For n, j ∈ N we have the next expansion of the binomial coefficients as a finite
sum over powers of n + 1 given in (i).(

n + 1
j + 1

)
=

(n + 1)!
(j + 1)! · (n + 1− (j + 1))!

=
j+1

∑
m=0

[
j + 1

m

]
(−1)j+1−m(n + 1)m

(j + 1)!
.(i)

The result in (26) then follows from the identity

H(k)
n = ∑

0≤j≤n

(
n + 1
j + 1

){
k + 2

j

}
∗
j!. �

4. Applications

4.1. New Series for Polylogarithm-Related Functions and Special Values. For the
geometric series special case of the transform in (3) with gn ≡ 1 for all n, the next trans-
formation stated in (27) is employed to expand the polylogarithm function, Lis(z) =

∑n≥1 zn/ns, in terms of only the jth derivatives, G(j)(z) := j!/(1 − z)j+1, as a series
analog to (7) given by

Lis(z) =
∞

∑
j=1

{
s + 2

j

}
∗

zj j!
(1− z)j+1 .(27)

Corollary 4.1 (Polylogarithm Functions). The polylogarithm functions, Lik(z), for k ∈
[1, 4] ⊆N are expanded as the following special case series:

Li1(z) =
∞

∑
j=1

(−1)j−1Hj
zj

(1− z)j+1

Li2(z) =
∞

∑
j=1

(−1)j−1

2

(
H2

j + H(2)
j

) zj

(1− z)j+1

Li3(z) =
∞

∑
j=1

(−1)j−1

6

(
H3

j + 3HjH
(2)
j + 2H(3)

j

) zj

(1− z)j+1

Li4(z) =
∞

∑
j=1

(−1)j−1

24

(
H4

j + 6H2
j H(2)

j + 3
(

H(2)
j

)2
+ 8HjH

(3)
j + 6H(4)

j

)
zj

(1− z)j+1 .
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Proof. These series follow from the coefficient identities given in (12) of Corollary 2.1
applied to the transformed series of the polylogarithm function in (27). �

Example 4.2 (The Alternating Zeta Function). Let s ∈ Z+ and consider the following
forms of the alternating zeta function, ζ∗(s) = Lis(−1), defined as in the references [4,
§7] 4.

ζ∗(s) :=
∞

∑
n=1

(−1)n−1

ns =
(

1− 21−s
)

ζ(s) · [s > 1]δ + Log(2) · [s = 1]δ(28)

Since ζ∗(s) ≡ −Lis(−1), the transformed series for the polylogarithm function in (27)
leads to series expansions given by

ζ∗(s) =
∞

∑
j=1

{
s + 2

j

}
∗

(−1)j−1 · j!
2j+1 .(29)

The coefficient formulas in Corollary 2.1 are then applied to obtain the following new
series results for the next few special cases of the alternating zeta function constants in
(28) 5:

ζ∗(1) =
∞

∑
j=1

Hj

2 · 2j ≡ Log(2)

ζ∗(2) =
∞

∑
j=1

(
H2

j + H(2)
j

)
4 · 2j ≡ 1

2
· π2

6

ζ∗(3) =
∞

∑
j=1

(
H3

j + 3HjH
(2)
j + 2H(3)

j

)
12 · 2j ≡ 3

4
· ζ(3)

ζ∗(4) =
∞

∑
j=1

(
H4

j + 6H2
j H(2)

j + 3
(

H(2)
j

)2
+ 8HjH

(3)
j + 6H(4)

j

)
48 · 2j ≡ 7

8
· π4

90
.

Notice that since the exponential generating function for the Stirling numbers of the
first kind, [ j+1

k+1]/j!, is given by

∑
j≥0

[
j + 1
k + 1

]
zj

j!
=

(−1)k

k! · (1− z)
Log

(
1

1− z

)k
,

4 The alternating zeta function, ζ∗(s), is defined in the alternate notation of ζ̄(s) for the function in
the reference [4, §7]. The series for ζ∗(s) is also commonly denoted by the Dirichlet eta function, η(s), also
as noted in the reference [7, eq. (3); §2].

5 These formulas are compared to the Bell polynomial expansions of the identity in (13) cited in [3,
§3]

Online Journal of Analytic Combinatorics, Issue 12 (2017), #02
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we may also write the left-hand-side sums in the previous equations in terms of powers
of Log(2) and partial Euler-like sums involving weighted terms of harmonic numbers.
For example, the series for ζ∗(s) for 3 ≤ s ≤ 5 are expanded as [1, §2] [6]

ζ∗(3) =
1
6

Log(2)3 + ∑
j≥0

HjH
(2)
j

2j+1 ≈ 0.901543

ζ∗(4) =
1
24

Log(2)4 + ∑
j≥0

H2
j H(2)

j

2j+2 + ∑
j≥0

HjH
(3)
j

2j+2 ≈ 0.947033

ζ∗(5) =
1

120
Log(2)5 + ∑

j≥0

H3
j H(2)

j

12 · 2j + ∑
j≥0

H(2)
j H(3)

j

6 · 2j + ∑
j≥0

HjH
(4)
j

2j+2 ≈ 0.972120.

Other identities for the partial sums of the right-hand-side sums in the previous equa-
tions are obtained through the Sigma package.

Example 4.3 (Fourier Series for the Periodic Bernoulli Polynomials). The Bernoulli poly-
nomials, Bn(x), have the exponential generating function [9, §24.2]

∑
n≥0

Bn(x)
n!

zn =
zexz

ez − 1
.

These polynomials also satisfy Fourier series of the following forms when k ≥ 0 and
where {x} denotes the fractional part of x ∈ R [9, cf. §24.8(i)]:

B2k+2 ({x})
(2k + 2)!

=
2(−1)k+1

(2π)2k+2 × ∑
n≥0

(−1)n

n2k+2 cos
[

2πn
(

x− 1
2

)]

=
(−1)k+1

(2π)2k+2 ∑
j≥1

{
2k + 4

j

}
∗


(

e2πı(x−1/2)
)j

(
1 + e2πı(x−1/2)

)j+1 +

(
e−2πı(x−1/2)

)j

(
1 + e−2πı(x−1/2)

)j+1


B2k+1 ({x})
(2k + 1)!

=
2(−1)k

(2π)2k+1 × ∑
n≥0

(−1)n

n2k+1 sin
[

2πn
(

x− 1
2

)]

=
(−1)k

(2π)2k+1 · ı ∑
j≥1

{
2k + 3

j

}
∗


(

e2πı(x−1/2)
)j

(
1 + e2πı(x−1/2)

)j+1 −

(
e−2πı(x−1/2)

)j

(
1 + e−2πı(x−1/2)

)j+1


Several particular examples of the series for the periodic Bernoulli polynomial variants,
Bk({x})/k!, expanded by the previous equations are given by

B1 ({5/4}) =
{

5
4

}
− 1

2
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=
(ı + 1)

4πı
×∑

j≥0

Hj

2j

(
(1− ı)j + ı(1 + ı)j

)
B2
({5

4

})
2

=

{
5
4

}2

−
{

5
4

}
− 1

6

= − (ı + 1)
16π2 ×∑

j≥0

H2
j + H(2)

j

2j

(
(1− ı)j − ı(1 + ı)j

)
B3

({
11
4

})
6

=

{
11
4

}3

− 3
2

{
11
4

}2

+
1
2

{
11
4

}
= − (ı + 1)

48π2 · ı ×∑
j≥0

(
H3

j + 3HjH
(2)
j + 2H(3)

j

) (
ıj − ı

)
(1 + ı)j+1 .

More generally, for k = 1, 2 and any x ∈ R we may write the periodic Bernoulli
polynomials in the forms of

B1 ({x}) =
1

2πı
Log

(
1− e2πı·x

1− e−2πı·x

)
B2 ({x})

2
= − 1

4π2 ∑
b=±1

(
Log(1− e2πı·bx)2 + 2 Li2

(
1
2
(1 + bı cot(πx))

))
.

4.2. Almost Linear Recurrence Relations for the k-Order Harmonic Numbers. We
first define the sequences, M(d)

k+1(n), for integers k > 2, d ≥ 1, and n ≥ 0 as

(30) M(d)
k+1(n) = ∑

1≤m≤d

[
d
m

]
H(k+1−m)

n .

We have an alternate sum for these terms proved in the following proposition.

Proposition 4.4 (An Alternate Sum Identity). For integers k > 2, d ≥ 1, and n ≥ 0, we
have that the harmonic number sums, M(d)

k+1(n), in (30) satisfy

(31) M(d)
k+1(n) = ∑

1≤j≤n

(
n
j

){
k + 2

j

}
∗

(−1)j

(j + d)
· (n + d)!

n!
.

Proof. We first use the RISC Mathematica package Guess6 to suggest a short proof that
both (30) and (31) satisfy the same homogeneous recurrence relation given by

M(d)
k+1(n)−M(d)

k+1(n + 1) + (n + 2)M(d)
k+2(n + 1)− (n + 2)M(d)

k+2(n) = 0,

though many other variants of this recurrence are formulated similarly. We then de-
duce from this observation that the two formulas are equivalent representations of the
harmonic number sums in (30). �

6 https://www.risc.jku.at/research/combinat/software/ergosum/RISC/Guess.html.
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We use the definition in (30) for multiple cases of d ∈ Z+ to obtain new almost linear
recurrence relations between the r-order harmonic numbers over r with “remainder”
terms given in terms of the sums in (31) of Proposition 4.4. The next corollary provides
several particular examples.

Corollary 4.5 (New Almost Linear Recurrence Relations for the Harmonic Numbers).
For n ≥ 0, k ∈ Z+, and any fixed m ∈ R, we have the following “almost linear” recurrence
relations for the harmonic number sequences involving so-termed “remainder” terms given by
the sequences defined in (31):

H(k)
n = H(k−2)

n − 3M(2)
k+1(n) + M(3)

k+1(n)

2H(k)
n = −3H(k−1)

n − H(k−2)
n −M(3)

k+1(n)

7H(k)
n = −12H(k−1)

n + 6H(k−2)
n − H(p−3)

n −M(2)
k+1(n) + M(4)

k+1(n)

5H(k)
n = −9H(k−1)

n − 5H(k−2)
n − H(p−3)

n −M(2)
k+1(n) + M(3)

k+1(n)−M(4)
k+1(n)

H(k)
n = 2H(k−2)

n − H(p−3)
n + M(2)

k+1(n)− 4M(3)
k+1(n) + M(4)

k+1(n)

H(k)
n = (1−m)H(k−2)

n + mH(p−4)
n − (12m + 3)M(2)

k+1(n) + (24m + 1)M(3)
k+1(n)

− 10mM(4)
k+1(n) + mM(5)

k+1(n).

Proof. We are able to prove these recurrences as special cases of more general equations
obtained from (30) by Gaussian elimination. Specifically, for constants ai, bi, ci ∈ R and
d 6= 0, the following more general recurrence relations follow from (30):

dH(k)
n = a1H(k−1)

n + (a1 + d) H(k−2)
n + (2a1 + 3d) M(2)

k+1(n) + (a1 + d) M(3)
k+1(n)

= b1H(k−1)
n + b2H(k−2)

n − (b1 − b2 + d) H(k−3)
n − (6b1 − 4b2 + 7d) M(2)

k+1(n)

+ (6b1 − 5b2 + 6d) M(3)
k+1(n)− (b1 − b2 + d) M(4)

k+1(n)

= c1H(k−1)
n + c2H(k−2)

n + c3H(k−3)
n + (c1 − c2 + c3 + d) H(k−4)

n

− (14c1 − 12c2 + 8c3 + 15d) M(2)
k+1(n) + (25c1 − 24c2 + 19c3 + 25d) M(3)

k+1(n)

− (10c1 − 10c2 + 9c3 + 10d) M(4)
k+1(n) + (c1 − c2 + c3 + d) M(5)

k+1(n).

Each of the recurrences listed in the corollaries above follow as special cases of these
results. �

Remark 4.6 (Applications of the Corollary). The limiting behavior of the recurrences
given in the corollary provide new almost linear relations between the integer-order
zeta constants and remainder terms expanded in the form of (31). The new recur-
rences given in Corollary 4.5 suggest an inductive approach to the limiting behaviors
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of these harmonic number sequences, and to the properties of the zeta function con-
stants, ζ(2k + 1), for integers k ≥ 1. The catch with this approach is finding non-trivial
approximations and limiting behaviors for the remainder terms, M(d)

k+1(n).
While the zeta function constants, ζ(2k) for k ≥ 1, are known in closed-form through

the Bernoulli numbers and rational multiples of powers of π, comparatively little is
known about properties of the odd-indexed zeta constants, ζ(2k + 1), when k ≥ 1,
with the exception of Apéry’s constant, ζ(3), which is known to be irrational. We do
however know that infinitely-many of these constants are irrational, and that at least
one of the constants, ζ(5), ζ(7), ζ(9), or ζ(11), must be irrational [15]. Statements of
recurrence relations between the zeta functions over the positive integers of this type
are apparently new, and offer new inductively-phrased insights to the properties of
these constants as considered in the special case example below.

Example 4.7 (Generating Functions for the Remainder Term Sequences). We can obtain
the following coefficient forms of the exponential and ordinary generating functions
for the remainder terms, M(d)

k+1(n), both directly from (31) and by applying the the
binomial transform to the corresponding generating functions for the sequences, {k

j}∗,
respectively denoted by S̃k,∗(z) and Ŝk,∗(z):

M(d)
k+1(n)
n!

= [zn]

(
∑

0≤i≤d

(
d
i

)2

(d− i)!ziD(i)
z

[
ez

(−z)d

∫ −z

0
td−1Ŝk+2,∗(t)dt

])

M(d)
k+1(n) =

(n + d)!
n!

· [zn]

(
ez/(1−z)

1− z

∫ −z/(1−z)

0
td−1S̃k+2,∗(t)dt

)

= [zn]

(
∑

0≤i≤d

(
d
i

)2

(d− i)!ziD(i)
z

[
ez/(1−z)

1− z

(
−z

1− z

)−d ∫ − z
1−z

0
td−1S̃k+2,∗(t)dt

])
.

The forms of these generating functions imply relations between the exponential se-
ries functions, L̂is(z) = ∑n≥1

zn

nsn! , and the exponential harmonic number generating
functions, as well as between the zeta function constants, ζ(k), for integers k ≥ 2 by
Corollary 4.5. For example, we may relate the first two cases of the zeta function
constants, ζ(2k + 1), over the odd positive integers by asymptotically estimating the
limiting behavior of the sums M(2)

6 (n) and M(3)
6 (n) as7

ζ(5) = ζ(3)− lim
n→∞

(
3M(2)

6 (n)−M(3)
6 (n)

)
7 We also note that the following formula is obtained from the series in (7) by a reverse binomial

transform operation for k ≥ 0 and j ≥ 1:{
k + 2

j

}
∗
=

(−1)j

(j− 1)!
[zj]Lik+1

(
− z

1− z

)
.
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= ζ(3) + lim
n→∞

[zn]

(
(3z− 1)
(1− z)4 S̃8,∗

(
− z

1− z

)
− z(3z + 1)

(1− z)5 S̃′8,∗

(
− z

1− z

)

+
z2

(1− z)6 S̃′′8,∗

(
− z

1− z

))
.

Other special case relations between zeta function constants are constructed similarly
from Corollary 4.5.

5. Conclusions

Summary of Results. The generalized coefficients implicitly defined through the trans-
formation result in (3) satisfy a number of properties and relations analogous to those
of the Stirling numbers of the second kind. The form of these implicit transformation
coefficients satisfy a non-triangular, two-index recurrence relation given in (4) that can
effectively be viewed as the Stirling number recurrence from (1) “in reverse.” The coef-
ficients defined recursively through (4) can alternately be viewed as a generalization of
the Stirling numbers of the second kind in the context of (2) for k ∈ Z \N.

There are a plethora of additional harmonic number identities and recurrence re-
lations that are derived from the identities given in Section 2. We may also use the
binomial transform with the new polylogarithm function series in (27) to give new
proofs of well-known functional equations satisfied by the dilogarithm and triloga-
rithm functions. Since the truncated polylogarithm series and ordinary harmonic num-
ber generating functions are always rational, we may adapt these generalized series
expansions to enumerate Euler-sum-like series with weighted coefficients of the form
H(π1)

n · · ·H(πk)
n /ns [12, §6.3].

Generalizations. The interpretation of the transformation coefficients in (4) as the finite
sum in (10) motivates several generalizations briefly outlined below. For example, given
any non-zero sequence, 〈 f (n)〉, we may define a formal series transformation for the
corresponding sums

∑
n≥1

gn

f (n)k zn = ∑
j≥1

{
k + 2

j

}
f ,∗

zjG(j)(z),

where the modified coefficients, {k+2
j } f ,∗

, are given by the sum

{
k + 2

j

}
f ,∗

=
1
j!

j

∑
m=1

(
j

m

)
(−1)j−m

f (m)k .

When f (n) = αn + β, we can derive a number of similar identities to the relations
established in this article in terms of the partial sums of the modified Hurwitz zeta
function, Φ(z, s, α, β) [5, cf. §3].
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Suppose that p/q ∈ Q+ and let the rational-order series transformation with respect
to z be defined as

QTp/q [F(z)] :=
∞

∑
n=0

np/q · [zn]F(z) · zn.

One topic for further exploration is generalizing the first transformation involving the
Stirling numbers of the second kind in (2) to analogous finite sum expansions that
generate the positive rational-order series in the previous equation. If |z| < 1, the
function Lis+1(z) is given by

Lis+1(z) =
z · (−1)s

s!

∫ 1

0

Log(t)s

(1− tz)
dt,

which is evaluated termwise with respect to z as [2, eq. (4); §2]

1
ns+1 =

(−1)s

s!

∫ 1

0
tn−1 · Log(t)s dt.

Other possible approaches to formulating the transformations of these series include
considering series involving fractional derivatives described briefly in the references [9,
§1.15(vi)-(vii)]. Another alternate approach is to consider a shifted series in powers
(n± 1)p/q that then employs an expansion over non-negative integral powers of n with
coefficients in terms of binomial coefficients, though the resulting transformations in
this case are no longer formulated as finite sums as in the formula from (2) when the
exponent of p/q assumes values over the non-integer, positive rational numbers.
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