
COUNTING STAIRCASES IN INTEGER COMPOSITIONS

AUBREY BLECHER AND TOUFIK MANSOUR

Abstract. The main theorem establishes the generating function F which counts the
number of times the staircase 1+2+3+ · · ·m+ fits inside an integer composition of n.

F =
km − qxmy

1−x km−1

(1− q)x(
m+1

2 )
( y

1−x
)m

+ 1−x−xy
1−x

(
km − qxmy

1−x km−1

) .

where

km =
m−1

∑
æ=0

xmj−( j
2)

(
y

1− x

)j
.

Here x and y respectively track the composition size and number of parts, whilst q tracks
the number of such staircases contained.

1. Introduction

In several recent papers the notion of integer compositions of n (represented as the
associated bargraph) have been used to model certain problems in physics. See for
example [2, 7–9] where bargraphs are a representation of a polymer at an adsorbing
wall subject to several forces.

In a paper by a current author et al (see [1]), the x-ray process was modelled using
permutation matrices as a two dimensional analogue of the object being x-rayed, where
the examining rays are modelled by diagonal lines with equation x + y = n for positive
integers n. The current paper is based instead on integer compositions as the object
analogue and where the examining rays are represented by equation x − y = n for
non negative integers n. Since this model is essentially parameterized by the degree to
which the x-rays are contained inside an arbitrary composition, it translates naturally
to obtaining a generating function which tracks the number of "staircases" which are
contained inside particular integer compositions of n. More precisely, we will obtain a
generating function which counts (with the exponent s of q as tracker) the number of
times the staircase 1+2+3+ · · ·m+ (m fixed) fits inside particular compositions. So the
term of our generating function n(a, b, s)xaybqs indicates that there are in total n(a, b, s)
compositions of a with b parts in which the staircases 1+2+3+ · · ·m+ occurs exactly s
times.
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2 AUBREY BLECHER AND TOUFIK MANSOUR

1.1. Definitions. A composition of a positive integer n is a sequence of k positive integers
a1, a2, · · · ak, each called a part such that n = ∑k

ß=1 ai; A staircase 1+2+3+ · · ·m+ is a
word with m sequential parts from left to right where for 1 ≤ i ≤ m the ith part ≥ i.

See for example the staircase in Figure 1 below.

...

...

...

...

...

Figure 1. The staircase 1+2+3+4+5+

Much recent work has been done on various statistics relating to compositions. See,
for example, [3, 5, 6] and [4] and references therein.

A particular composition may be represented as a bargraph (see [4] and [2]). For
example the composition 4 + 3 + 1 + 2 + 3 of 13 represented in Figure 2 as a bargraph,
contains exactly one 1+2+3+ staircase, three 1+2+ staircases and five 1+ staircases. It
contains no others.

Figure 2. The composition 4 + 3 + 1 + 2 + 3 containing one staircase
1+2+3+ (coloured) and three 1+2+ staircases

In this paper, compositions (ie their associated bargraphs) are the analogue for a
(2-dimensional) object to be x-rayed (as explained above). Across all possible compo-
sitions, the shapes are parameterized in a generating function by a marker variable q
which tracks the number of 1+2+3+ · · ·m+ staircases (again with m fixed) that fit inside
a composition. The generating function in question is defined as

(1) F = ∑
a≥1;b≥1;s≥0

n(a, b, s)xaybqs,

where n(a, b, s) is the number of compositions of a with b parts that contain s staircases
1+2+3+ · · ·m+.
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The main theorem arrived at by the end of the paper consists in establishing a for-
mula for the generating function F defined in equation (1). We state it here for com-
pleteness:

F =
km − qxmy

1−x km−1

(1− q)x(
m+1

2 )
( y

1−x
)m

+ 1−x−xy
1−x

(
km − qxmy

1−x km−1

) ,

where km = ∑m−1
æ=0 xmj−( j

2)
( y

1−x
)j. Prior to this main theorem, several lemmas present a

set of recursions which are used in proving this result.

2. Proofs

2.1. Warmup: compositions containing words of the form 1+2+ or 1+2+3+. Consider
words which are of the form 1+2+; i.e., words of two parts adjacent to each other from
left to right with the first being a letter > 0 and the second being a letter > 1.

We let F be the generating function for all words; Fa be the generating function for all
words starting with the letter a and in general Fa1a2···an be the gf (generating function)
for words starting with the letters a1a2 · · · an. So by definition

(2) F = 1 + ∑
a≥1

Fa.

And we have the following recurrence:

(3) Fa = xay + Fa1 + Fa2 + Fa3 + · · ·

Now Fa1 = xayF1 and Fab = qxayFb for b > 1. So Fa = xay(1 + F1 + qF2 + qF3 + · · · ).
Thus for all a ≥ 1, we have Fa = xay(1− q)(1 + F1) + qxayF. As the second part of our
warmup, we now examine the pattern 1+2+3+, i.e., we focus on compositions which
contain this word sequence.

Extracting part of the first letter, we have

(4) Fa = xa−1F1.

From equation (2),

(5) F = 1 + ∑
a≥1

Fa = 1 +
1

1− x
F1.

Also

F1 = xy + (F11 + F12 + F13 + · · · )
= xy + xy(F1 + F12 + xF12 + x2F12 + · · · )

= xy + xyF1 +
1

1− x
F12,(6)
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where

F12 = x3y2 + F121 + F122 + (F123 + · · · )
= x3y2 + x3y2F1 + x2yF12 + (qx3yF12 + qx4yF12 + · · · )

= x3y2 + x3y2F1 + x2yF12 +
qx3y
1− x

F12.(7)

The last three equations have three unknowns F, F1, and F12 which we can solve for
F using Cramer’s rule. However, instead, we try the general pattern.

2.2. The general pattern 1+2+3+ · · ·m+. As before, Fa = xa−1F1 and

(8) F = 1 + ∑
a≥1

Fa = 1 +
1

1− x
F1.

Now

F1 = xy + (F11 + F12 + F13 + · · · )
= xy + xy(F1 + F12 + xF12 + x2F12 + · · · )

= xy + xyF1 +
1

1− x
F12(9)

and

F12 = x3y2 + F121 + F122 + (F123 + · · · )
= x3y2 + x3y2F1 + x2yF12 + (F123 + xF123 + x2F123 + · · · )

= x3y2 + x3y2F1 + x2yF12 +
1

1− x
F123.(10)

Next, by a similar process

F123 = x6y3 + x6y3F1 + x5y2F12 + x3yF123 +
1

1− x
F1234.(11)

Proceeding in this way, we obtain in general for all j ≤ m− 1

F12···j = x(
j+1

2 )yj + x(
j+1

2 )−(1
2)yjF1 + x(

j+1
2 )−(2

2)yj−1F12

+ x(
j+1

2 )−(3
2)yj−2F123 + · · ·+ x(

j+1
2 )−( j

2)yF12···j +
1

1− x
F12···j+1.(12)

with

F12···m = qxmyF12···m−1.(13)
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To simplify the presentation we put z = −1
1−x . Now, we rewrite equations (7)-(13) in

matrix form. So we first define the matrix A as

1 z 0 0 · · · · · · · · · 0

0 1− x(
2
2)−(

1
2)y z 0 · · · · · · · · · 0

0 −x(
3
2)−(

1
2)y2 1− x(

3
2)−(

2
2)y z · · · 0

...
...

0 −x(
m−1

2 )−(1
2)ym−2 −x(

m−1
2 )−(2

2)ym−3 −x(
m
2 )−(

3
2)ym−4 · · · −x(

m−1
2 )−(m−2

2 )y z 0

0 −x(
m
2 )−(

1
2)ym−1 −x(

m
2 )−(

2
2)ym−2 −x(

m
2 )−(

3
2)ym−3 · · · −x(

m
2 )−(

m−2
2 )y2 1− x(

m
2 )−(

m−1
2 )y z

0 0 0 0 · · · 0 −qxmy 1



and C to be the vector
(

x(
1
2), x(

2
2)y, x(

3
2)y2, · · · , x(

m−1
2 )ym−2, x(

m
2 )ym−1, 0

)T
. Then the ma-

trix form of our equations is AX = C where it is the first entry of matrix X (the matrix
of variables from equations (7)-(13)) that is our required generating function F. So
defining B as the matrix obtained from the above matrix A by replacing its first column
with the entries from C; i.e.



x(
1
2) z 0 · · · · · · · · · 0

x(
2
2)y 1− x(

2
2)−(

1
2)y z · · · · · · · · · 0

x(
3
2)y2 −x(

3
2)−(

1
2)y2 1− x(

3
2)−(

2
2)y · · · 0

...
...

x(
m−1

2 )ym−2 −x(
m−1

2 )−(1
2)ym−2 −x(

m−1
2 )−(2

2)ym−3 · · · −x(
m−1

2 )−(m−2
2 )y z 0

x(
m
2 )ym−1 −x(

m
2 )−(

1
2)ym−1 −x(

m
2 )−(

2
2)ym−2 · · · −x(

m
2 )−(

m−2
2 )y2 1− x(

m
2 )−(

m−1
2 )y z

0 0 0 · · · 0 −qxmy 1


.

By Cramer’s rule, we obtain

(14) F =
det B
det A

.

2.3. Equations for det A and det B in a form that can be solved recursively. Define
the mxm matrix Nm, to be the first m rows and columns of the (m + 1)x(m + 1) matrix
A, but where the first column of A has initially been replaced by the first m entries of

C. To simplify the notation further, we let wij = x(
i
2)−(

j
2)yi−j and so explicitly written

out,

Nm :=


x(

1
2)y0 z 0 0 · · · 0

x(
2
2)y 1− w21 z 0

...
x(

3
2)y2 −w31 1− w31 z

...
...

x(
m
2 )ym−1 −wm1 · · · · · · 1− wm1

 .

By cofactor expansions (initially along the last row of B), we obtain

(15) det B = det Nm + zqxmy det Nm−1.
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And let Cm−1 be the (m− 1)x(m− 1) matrix obtained by deleting the first row and
column of Nm. So, for example,

C4 =


1− w21 z 0 0
−w31 1− w32 z 0
−w41 −w42 1− w43 z
−w51 −w52 −w53 1− w54

 .

By employing cofactor expansions (also, initially along the last row of A), we see that

(16) det A = det Cm−1 + zqxmy det Cm−2.

Again, by employing co-factor expansions along the last row of C4, we see that

det C4 = (1− w54)det C3 + zw53 det C2 − w52z2 det C1 + w51z3 det C0,

where det C0 := 1. In general, a cofactor expansion along the last row of Cm yields for
m ≥ 1

det Cm = (1− wm+1m)det Cm−1 +
m−1

∑
æ=1

(−1)m−1−jwm+1jzm−j det Cj−1.

Once again making the replacement wij = x(
i
2)−(

j
2)yi−j, we have for m ≥ 1

(17) det Cm = (1− xmy)det Cm−1 +
m−1

∑
æ=1

(−1)m−1−jx(
m+1

2 )−( j
2)ym+1−jzm−j det Cj−1.

Dropping m by 1 and multiplying this equation by −xmyz, we obtain

− xmyz det Cm−1

= −xmyz(1− xm−1y)det Cm−2 +
m−2

∑
æ=1

(−1)m−1−jx(
m+1

2 )−( j
2)ym+1−jzm−j det Cj−1.(18)

By subtracting (18) from (17), we obtain

det Cm + xmyz det Cm−1

= (1− xmy)det Cm−1 + xmyz(1− xm−1y)det Cm−2 + x2m−1y2z det Cm−2.

Simplifying,

(19) det Cm = (1− xmy(1 + z))det Cm−1 + xmyz det Cm−2,

where det C−1 := 1; det C0 = 1; det C1 = 1− xy = 1− w21.
For ease of notation in the remainder of the paper, we abbreviate det Cm as Cm, and

define the generating function C(t) = ∑m≥0 Cmtm. By multiplying equation (19) by tm

and then summing from 1 to infinity, we obtain

C(t)− 1 = tC(t)− (1 + z)xytC(xt) + x2yt2zC(xt) + xyzt.
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Therefore

(20) C(t) =
1 + xyzt

1− t
− xytC(xt)

1 + z(1− xt)
1− t

.

Again to simplify the notation, substitute f (t) := 1+xyzt
1−t and ϕ(t) := −xyt 1+z(1−xt)

1−t ,
and iterate the previous equation to obtain:

C(t) = f (t) + ϕ(t)C(xt) = f (t) + ϕ(t) f (xt) + ϕ(t)ϕ(xt)C(x2t).(21)

Repeatedly iterating (assuming |x| < 1), we obtain

C(t) = ∑
j≥0

f (xjt)
j−1

∏
ß=0

ϕ(xit)

= ∑
j≥0

(−1)j 1 + xj+1yzt
1− xjt

x(
j+1

2 )yjtj
j−1

∏
ß=0

1 + z(1− xi+1t)
1− xit

.

Recall that z = −1
1−x which implies 1 + z = −x

1−x . Therefore,

C(t) = ∑
j≥0

(−1)j(1 + xj+1yzt)x(
j+1

2 )yjtj ∏
j
ß=1(1−

zxit
1+z )

∏
j
ß=0(1− xit)

(1 + z)j

= ∑
j≥0

(−1)j(1 + xj+1yzt)x(
j+1

2 )yjtj(
−x

1− x
)j ∏

j−1
ß=0(1− xit)

∏
j
ß=0(1− xit)

= ∑
j≥0

(1 + xj+1yzt)x
j(j+3)

2 yjtj

(1− x)j(1− xjt)
.

For further notational simplification, we let

f j =
(1 + xj+1yzt)x

j(j+3)
2 yjtj

(1− x)j(1− xjt)
.

Finally, substituting for the remaining z as above and using partial fractions

f j =
x1+ j(j+3)

2 yj+1tj

(1− x)j+1 +
x

j(j+3)
2 yj(1− x− xy)tj

(1− x)j+1(1− xjt)

=
x1+ j(j+3)

2 yj+1tj

(1− x)j+1 +
x

j(j+3)
2 yj(1− x− xy)tj

(1− x)j+1 ∑
k≥0

xjktk.

Hence the mth coefficient of C(t) is given by

Cm =
x(

m+2
2 )ym+1

(1− x)m+1 +
m

∑
j=0

x
j2+3j

2 −j2+jmyj(1− x− xy)
(1− x)j+1

So, we obtain the following lemma.
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Lemma 2.1. The determinants Cm of the matrices obtained from Nm+1 (see equation (2.3)) by
deleting its first row and column are given by

(22) Cm = x(
m+2

2 )

(
y

1− x

)m+1

+
1− x− xy

1− x

m

∑
j=0

x(m+1)j−( j
2)

(
y

1− x

)j
.

For initial cases, we have det N1 = 1 and det N2 = 1 − xy − zxy. By a cofactor
expansion along the last row, we obtain for m ≥ 2

det Nm = (1− xm−1y)det Nm−1

+
m−2

∑
æ=1

(−1)m−jx(
m
2 )−(

j
2)ym−jzm−1−j det Nj + (−1)m−1x(

m
2 )ym−1zm−1.(23)

Dropping m by 1 and multiplying this equation by −xm−1yz (a similar process to that
used in a previous section), we obtain for m ≥ 3

−xm−1yz det Nm−1 = −xm−1yz(1− xm−2y)det Nm−2

+
m−3

∑
æ=1

(−1)m−jx(
m
2 )−(

j
2)ym−jzm−1−j det Nj + (−1)m−1x(

m
2 )ym−1zm−1.(24)

Subtracting (24) from (23), we obtain

det Nm + xm−1yz det Nm−1

= (1− xm−1y)det Nm−1 + xm−1yz(1− xm−2y)det Nm−2 + x2m−3y2z det Nm−2

= (1− xm−1y)det Nm−1 + xm−1yz det Nm−2.

Hence for m ≥ 2,

(25) det Nm = (1− xm−1y(1 + z))det Nm−1 + xm−1yz det Nm−2

with det N0 = 0 and det N1 = 1.
For the rest of the paper we simplify matters by abbreviating Nm := det Nm and now

define the generating function N(t) = ∑m≥0 Nmtm. By multiplying equation (25) by tm,
summing from 1 to infinity, we obtain

N(t)− t = tN(t)− y(1 + z)tN(xt) + xyzt2N(xt)

with N−1 := 0. Hence

(26) N(t) =
t

1− t
+

xyzt2 − y(1 + z)t
1− t

N(xt).
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Repeatedly iterating (26) on t (while recalling that z = −1
1−x , and assuming |x| < 1), we

obtain

N(t) = ∑
j≥0

xjt
1− xjt

j−1

∏
ß=0

yxit(−xi+1t
1−x + x

1−x )

1− xit

= ∑
j≥0

xjt
1− xjt

j−1

∏
ß=0

yxit
1− x

= ∑
j≥0

x
j2+3j

2 yjtj+1

(1− xjt)(1− x)j .

Thus, we have our final lemma.

Lemma 2.2. With Nm := det Nm (see (2.3))

(27) Nm = [tm]N(t) =
m−1

∑
j=0

xmj−( j
2)

(
y

1− x

)j
.

2.4. The generating function F. Finally, apply (15) and (16) to (14). Then, use lemma
2.1 and lemma 2.2, to obtain:

Theorem 2.3. The generating function F = ∑a≥1;b≥1;s≥0 n(a, b, s)xaybqs for the number of
staircases 1+2+3+ · · ·m+ (tracked by the exponent of variable q) contained in particular com-
positions (of a with b parts) is given by

(28) F =
Nm − qxmy

1−x Nm−1

(1− q)x(
m+1

2 )
( y

1−x
)m

+ 1−x−xy
1−x

(
Nm − qxmy

1−x Nm−1

) .

For example, Theorem 2.3 with q = 1 yields Fq=1 = 1−x
1−x−y , which is the generating

function for the number of compositions of n with exactly m parts (see [4]).
By differentiating the generating function F with respect to q and then substituting

q = 1, we obtain

dF
dq
|q=1 =

x(
m+1

2 )
( y

1−x
)m

(1−x−xy)2

(1−x)2

(
∑m−1

j=0 xmj−( j
2)
( y

1−x
)j −∑m−1

j=1 xmj−( j
2)
( y

1−x
)j
)

=
x(

m+1
2 )ym

(1− x− xy)2(1− x)m−2

=
x(

m+1
2 )

(1− x)m ∑
j≥0

(j + 1)
xjym+j

(1− x)j
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Next, we extract coefficients; firstly of [yl] to obtain

(`−m + 1)
x`+(m

2 )

(1− x)`
= (`−m + 1) ∑

j≥0

(
`+ j− 1

j

)
x`+j+(m

2 ),

and then of [xn] which leads to the following result.

Corollary 2.4. The total number of staircases 1+2+3+ · · ·m+ in all compositions of n with
exactly ` parts is given by

(`−m + 1)
(

n− 1− (m
2 )

`− 1

)
.
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