Fixed Points of Maps on the Space of Rational Functions

Edward Mosteig
Department of Mathematics
Loyola Marymount University
Los Angeles, California 90045
E-mail: emosteig@lmu.edu

Submitted: September 15, 2005; Accepted: May 2, 2006; Published: May 5, 2006

Abstract

Given integers s, t, define a function $\phi_{s, t}$ on the space of all formal series expansions by $\phi_{s, t}\left(\sum a_{n} x^{n}\right)=\sum a_{s n+t} x^{n}$. For each function $\phi_{s, t}$, we determine the collection of all rational functions whose Taylor expansions at zero are fixed by $\phi_{s, t}$. This collection can be described as a subspace of rational functions whose basis elements correspond to certain s-cyclotomic cosets associated with the pair (s, t).

Subject Class: Primary 33
Keywords: Rational functions, integrals, fixed points

1 Introduction

Let \mathfrak{R} denote the space of rational functions with complex coefficients. The Taylor expansion at $x=0$ of $R \in \mathfrak{R}$ can be written as a Laurent series, i.e.,

$$
\begin{equation*}
R(x)=\sum_{n \gg-\infty} a_{n} x^{n} \tag{1.1}
\end{equation*}
$$

where $n \gg-\infty$ denotes the fact that the coefficients vanish for large negative n. For $s, t \in \mathbb{Z}$, define the map $\phi_{s, t}: \mathfrak{R} \rightarrow \mathfrak{R}$ by

$$
\begin{equation*}
\phi_{s, t}\left(\sum a_{n} x^{n}\right)=\sum a_{s n+t} x^{n} \tag{1.2}
\end{equation*}
$$

Denote the standard s-th root of unity throughout this paper by $\omega_{s}=e^{2 \pi i / s}$. When s is positive, consider the restriction $\phi_{s, t}: \mathfrak{R} \rightarrow \mathfrak{R}$. One can rewrite this map explicitly without the use of series expansions:

$$
\begin{equation*}
\phi_{s, t}(R(x))=\left(\frac{1}{s}\right) x^{-t / s} \sum_{j=0}^{s-1} \omega_{s}^{-j t} R\left(\omega_{s}^{j} x^{1 / s}\right) . \tag{1.3}
\end{equation*}
$$

Indeed, if $R(x)=\sum a_{n} x^{n}$, then $R\left(\omega_{s}^{j} x^{1 / s}\right)=\sum a_{n} \omega_{s}^{j n} x^{n / s}$, and so the coefficient of $x^{(s n+t) / s}$ in the summation $\sum a_{n} \omega_{s}^{j n} x^{n / s}$ is $a_{s n+t} \omega_{s}^{j(s n+t)}$. Therefore, the coefficient of x^{n} in $\left(\frac{1}{s}\right) x^{-t / s} \sum_{j=0}^{s-1} \omega_{s}^{-j t} R\left(\omega_{s}^{j} x^{1 / s}\right)$ is $\left(\frac{1}{s}\right) \sum_{j=0}^{s-1} \omega_{s}^{-j t} a_{s n+t} \omega_{s}^{j(s n+t)}=\left(\frac{1}{s}\right) \sum_{j=0}^{s-1} a_{s n+t}=a_{s n+t}$.

The map $\phi_{2,1}$ can be used in a general procedure for the exact integration of rational functions, as described in [2]. Dynamical properties of $\phi_{2,1}$, including kernels of the iterates,
dynamics of subclasses of rational functions, and fixed points are discussed in [1]. The purpose of this paper is to generalize one of the results in [1] by classifying, for each pair of integers s, t, the collection of all rational functions that are fixed by $\phi_{s, t}$. If s is an integer such that $s \leq 1$, then 0 is the only rational function fixed by $\phi_{s, t}$, unless, of course, $(s, t)=(1,0)$, in which case $\phi_{s, t}$ is the identity. When $s \geq 2$, however, the story is much more interesting.

2 Cyclotomic Cosets

In this section, we assume throughout that $s \geq 2,0 \leq t \leq s-2$, and $R \in \mathfrak{R}$ such that

$$
\begin{equation*}
\phi_{s, t}(R(x))=R(x) . \tag{2.1}
\end{equation*}
$$

Given these restrictions on s and t, it follows that $|t /(s-1)|<1$. Thus, if $n \leq-1$, then $n<-t /(s-1)$, and so $s n+t<n$. Assuming that $R(x)$ is fixed by $\phi_{s, t}$, we have that $a_{s n+t}=a_{n}$ for all n. Thus, if a_{n} is nonzero for any negative value of n, then there are infinitely many nonzero coefficients of negative powers of x, contradicting the assumption that $R(x)$ is of the form given in equation (1.1).

We write R in the form

$$
\begin{equation*}
R(x)=\sum_{n=0}^{\infty} f(n) x^{n} \tag{2.2}
\end{equation*}
$$

to emphasize the fact that the coefficients can be interpreted as the images of a generating function $f: \mathbb{N} \rightarrow \mathbb{C}$. Since $R(x)$ is fixed by $\phi_{s, t}$, it follows that

$$
\begin{equation*}
f(n)=f(s n+t) \tag{2.3}
\end{equation*}
$$

for all integers n. The following result, which was proven on page 202 of [5], elucidates the relationship between the generating function f of the coefficients of the Taylor expansion of $R(x)$ and the representation of $R(x)$ as a quotient of polynomials.
Lemma 2.1. Let $q_{1}, q_{2}, \ldots, q_{d}$ be a fixed sequence of complex numbers, $d \geq 1$, and $q_{d} \neq 0$. The following conditions on a function $f: \mathbb{N} \rightarrow \mathbb{C}$ are equivalent:

1. $\sum_{n \geq 0} f(n) x^{n}=\frac{P(x)}{Q(x)}$ where, $Q(x)=1+q_{1} x+q_{2} x^{2}+q_{3} x^{3}+\cdots+q_{d} x^{d}$.
2. For $n \gg 0$,

$$
f(n)=\sum_{i=1}^{J} P_{i}(n) \lambda_{i}^{n}
$$

where $1+q_{1} x+q_{2} x^{2}+q_{3} x^{3}+\cdots+q_{d} x^{d}=\prod_{i=1}^{J}\left(1-\lambda_{i} x\right)^{d_{i}}$, the λ_{i} 's are distinct, and $P_{i}(n)$ is a polynomial in n of degree less than d_{i}.

In this section, we construct a collection of rational functions that are fixed by $\phi_{s, t}$, and in the next section we use the above lemma to justify that this collection spans the subspace of \mathfrak{R} consisting of all rational functions that are fixed by $\phi_{s, t}$.

The description of all the fixed points of $\phi_{s, t}$ requires the notion of cyclotomic cosets: given $n, r \in \mathbb{N}$ with $r \geq 1$ such that r and s are relatively prime,

$$
\begin{equation*}
C_{s, r, n}=\left\{s^{i} n \bmod r: i \in \mathbb{Z}\right\} \tag{2.4}
\end{equation*}
$$

is a finite set called the s-cyclotomic coset of $n \bmod r$. We will characterize the fixed points $\phi_{s, t}$ using cyclotomic cosets with a special property. To describe this property, first define

$$
\begin{equation*}
\beta_{s, t}(k)=t\left(\frac{s^{k}-1}{s-1}\right) \tag{2.5}
\end{equation*}
$$

for which we have the following recursive formula:

$$
\begin{equation*}
\beta_{s, t}(j+1)=s \beta_{s, t}(j)+t \tag{2.6}
\end{equation*}
$$

Definition 2.2. A positive integer r is called distinguished with respect to the pair (s, t) if r and s are relatively prime and

$$
\begin{equation*}
r \mid \beta_{s, t}(\operatorname{Ord}(s ; r)) \tag{2.7}
\end{equation*}
$$

where $\operatorname{Ord}(s ; r)$ represents the smallest positive integer i such that $s^{i} \equiv 1 \bmod r$. We say $r=0$ is distinguished with respect to (s, t) if and only if $t=0$. We denote the set of integers distinguished with respect to (s, t) by $\Omega(s, t)$.

Proposition 2.3. For each pair (s, t), the set $\Omega(s, t)$ is infinite.
Proof. Since $\Omega(s, t) \subset \Omega(s, 1)$, we need only show that $\Omega(s, 1)$ is infinite. Let r be a positive integer such that $\operatorname{gcd}(r, s(s-1))=1$. If $\alpha=\operatorname{Ord}(s ; r)$, then $s^{\alpha} \equiv 1 \bmod r$; that is, $r \mid s^{\operatorname{Ord}(s ; r)}-1$. Since $s^{\operatorname{Ord}(s ; r)}-1$ is a multiple of $(s-1)$, and r is relatively prime to $(s-1)$, it follows that $r(s-1) \mid s^{\operatorname{Ord}(s ; r)}-1$. Thus, $r \left\lvert\, \frac{s^{\operatorname{Ord}(s, r)}-1}{s-1}=\beta_{(s, 1)}(\operatorname{Ord}(s ; r))\right.$, and so r is distinguished with respect to $(s, 1)$.

For example, consider

$$
\Omega(3,1)=\{1,4,5,7,10,11,13,14,17,19,20,23,25,28,29,31,34,35,37,38, \ldots\} .
$$

From Proposition 2.3, we see that $\Omega(3,1)$ contains the arithmetic sequences $\{6 n+1\}$ and $\{6 n+5\}$. With a little more effort, one can show that $\Omega(3,1)$ also contains the arithmetic sequences $\{24 n+4\},\{24 n+10\}$, $\{24 n+14\}$, and $\{24 n+20\}$. The smallest integer in $\Omega(3,1)$ not contained in any of these sequences is 40 . Moreover, a calculation shows that $96 n+40$, for $0 \leq n \leq 5$ is in $\Omega(3,1)$, but $616=96 \cdot 6+40$ is not in $\Omega(3,1)$. An interesting question of further study is whether the sets $\Omega(s, t)$ have a nice characterization. For example, we might ask whether they can be written as a (possibly infinite) union of arithmetic sequences, as is the case for $\Omega(2,1)$, which consists precisely of all odd natural numbers. However, the example $\Omega(3,1)$ suggests that this may not be the case in general.

A generating set for the collection of fixed points of $\phi_{s, t}$ will be indexed by s-cyclotomic cosets $C_{s, r, n}$ where r is distinguished with respect to (s, t). Note that by computing

$$
\begin{equation*}
\phi_{s, t}\left(\frac{1}{1-\lambda x}\right)=\frac{\lambda^{t}}{1-\lambda^{s} x} \tag{2.8}
\end{equation*}
$$

we acquire the following formula for the iterates of $\phi_{s, t}$:

$$
\begin{equation*}
\phi_{s, t}^{(k)}\left(\frac{1}{1-\lambda x}\right)=\frac{\lambda^{\beta_{s, t}(k)}}{1-\lambda^{s^{k}} x} . \tag{2.9}
\end{equation*}
$$

For $r \geq 1$ and $n \in \mathbb{N}$, define

$$
\begin{equation*}
\psi_{s, t, r, n}(x)=\sum_{j=1}^{\operatorname{Ord}(s ; r)} \frac{\omega_{r}^{n \beta_{s, t}(j)}}{1-\omega_{r}^{n s^{j}} x}=\sum_{j=1}^{\operatorname{Ord}(s, r)} \phi_{s, t}^{(j)}\left(\frac{1}{1-\omega_{r}^{n} x}\right) \tag{2.10}
\end{equation*}
$$

Note that if $n=0$, then $\psi_{s, t, r, 0}=1 /(1-x)$. If $t=0$, then $r=0$ is distinguished with respect to (s, t), and we define

$$
\begin{equation*}
\psi_{s, 0,0, n}(x)=1 \tag{2.11}
\end{equation*}
$$

Proposition 2.4. If r is distinguished with respect to (s, t), then $\psi_{s, t, r, n}(x)$ is fixed by $\phi_{s, t}$.
Proof. If $r>1$ is distinguished with respect to (s, t), then

$$
\phi_{s, t}^{(\operatorname{Ord}(s ; r)+1)}\left(\frac{1}{1-\omega_{r}^{n} x}\right)=\phi_{s, t}\left(\phi_{s, t}^{(\operatorname{Ord}(s ; r))}\left(\frac{1}{1-\omega_{r}^{n} x}\right)\right)=\phi_{s, t}\left(\frac{1}{1-\omega_{r}^{n} x}\right)
$$

and so
$\phi_{s, t}\left(\psi_{s, t, r, n}(x)\right)=\phi_{s, t}\left(\sum_{j=1}^{\operatorname{Ord}(s ; r)} \phi_{s, t}^{(j)}\left(\frac{1}{1-\omega_{r}^{n} x}\right)\right)=\left(\sum_{j=1}^{\operatorname{Ord}(s, r)} \phi_{s, t}^{(j+1)}\left(\frac{1}{1-\omega_{r}^{n} x}\right)\right)=\psi_{s, t, r, n}(x)$.
Thus $\psi_{s, t, r, n}(x)$ is fixed by $\phi_{s, t}$. Since constants are fixed by $\phi_{s, 0}$, it follows that $\psi_{s, 0,0, n}$ is fixed by $\phi_{s, 0}$. Since $r=0$ is distinguished only with respect to $t=0$, we have shown the result holds in all possible cases.

3 The Space of Fixed Points of $\phi_{s, t}$

We now classify all the fixed points of $\phi_{s, t}$ for all integers s, t. To do so, we first demonstrate a bijective correspondence between fixed points of $\phi_{s, t}$ and $\phi_{s, t+u(s-1)}$ where u is an arbitrary integer.

Lemma 3.1. For all integers s, t, u, the rational function $R(x)$ is a fixed point of $\phi_{s, t}$ iff $x^{-u} R(x)$ is a fixed point of $\phi_{s, t+u(s-1)}$.
Proof. Using equation (1.3), one can show directly that for any integers s, t, u,

$$
\phi_{s, t}(R(x))=x^{u} \phi_{s, t+(s-1) u}\left(x^{-u} R(x)\right),
$$

and so

$$
\begin{aligned}
\phi_{s, t}(R(x))=R(x) & \Leftrightarrow x^{u} \phi_{s, t+(s-1) u}\left(x^{-u} R(x)\right)=R(x) \\
& \Leftrightarrow \phi_{s, t+(s-1) u}\left(x^{-u} R(x)\right)=x^{-u} R(x) .
\end{aligned}
$$

Given this correspondence, we only have to compute the fixed points of $\phi_{s, t}$ in case $0 \leq t \leq s-2$. Once this is accomplished, to compute the fixed points of $\phi_{s, t}$ for arbitrary t, we only need to find t^{\prime}, u such that $0 \leq t^{\prime} \leq s-2$ and $t=t^{\prime}+u(s-1)$, and then use the correspondence. The following result provides the missing component of this scheme, thus allowing us to compute the fixed points $\phi_{s, t}$ for any integers s and t.

Proposition 3.2. Suppose $s \geq 2$ and $0 \leq t \leq s-2$. A rational function is fixed by $\phi_{s, t}$ if and only if it is a linear combination of the functions $\psi_{s, t, r, n}(x)$ where r is distinguished with respect to (s, t) and n is relatively prime to r.
Proof. We showed in Proposition 2.4 that if r is distinguished with respect to (s, t), then $\psi_{s, t, r, n}(x)$ is fixed by $\phi_{s, t}$, and so every linear combination of such functions must be fixed by $\phi_{s, t}$.

To prove the converse, we consider a rational function $R(x)$ fixed by $\phi_{s, t}$, and express it as

$$
\begin{equation*}
R(x)=C(x)+\frac{P(x)}{Q(x)} \tag{3.1}
\end{equation*}
$$

where $C(x), P(x), Q(x)$ are polynomials such that $P(x)$ and $Q(x)$ are relatively prime with $\operatorname{deg} P(x)<\operatorname{deg} Q(x)$. Our first goal is to show that the poles of $R(x)$ must be simple. We write

$$
\begin{equation*}
\frac{P(x)}{Q(x)}=\sum_{n=0}^{\infty} f(n) x^{n} \tag{3.2}
\end{equation*}
$$

where $f(n)$ is the generating function for $P(x) / Q(x)$. Since $f(n)=f(s n+t)$, we have by Lemma 2.1, $f(s n+t)=\sum P_{i}(s n+t) \lambda_{i}^{t}\left(\lambda_{i}^{s}\right)^{n}$ and

$$
\begin{equation*}
Q(x)=\prod_{i=1}^{J}\left(1-\lambda_{i} x\right)^{d_{i}}=\prod_{i=1}^{J}\left(1-\lambda_{i}^{s} x\right)^{e_{i}} \tag{3.3}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left\{\lambda_{1}, \ldots, \lambda_{J}\right\}=\left\{\lambda_{1}^{s}, \ldots, \lambda_{J}^{s}\right\} . \tag{3.4}
\end{equation*}
$$

Thus the set $\left\{\lambda_{1}, \cdots, \lambda_{J}\right\}$ is permuted by the map $z \mapsto z^{s}$, and so each λ_{j} is a primitive r_{j}-th root of unity where r_{j} is a positive integer. Moreover, since $\left\{\lambda_{1}, \ldots, \lambda_{J}\right\}$ is permuted by the map $z \mapsto z^{s}$, it follows that for each $1 \leq j \leq J$, there exists a positive integer ℓ such that $\lambda_{j}^{s \ell}=\lambda_{j}$ (after applying the map $z \mapsto z^{s}$ multiple times). Therefore, $\lambda_{j}^{s \ell-1}=1$, and so $r_{j} \mid s \ell-1$. Thus r_{j} and s are relatively prime.

Let $M=\operatorname{lcm}\left(r_{1}, \ldots, r_{j}\right)$ and for $a \in \mathbb{N}$, define

$$
R_{a}=\{m \in \mathbb{N}: m \equiv a \bmod M\}
$$

Let $f_{a}=\left.f\right|_{R_{a}}$ be the restriction of the function $f: \mathbb{N} \rightarrow \mathbb{C}$ to the set R_{a}. Then

$$
f_{a}(a+j M)=\sum_{i=1}^{J} P_{i}(a+j M) \lambda_{i}^{a+j M}=\sum_{i=1}^{J} P_{i}(a+j M) \lambda_{i}^{a}
$$

and so each f_{a} has a representation as a polynomial in the variable j since λ_{i}^{a} is constant on the set R_{a}. We denote the natural extension of this map to an element of the polynomial ring $\mathbb{C}[j]$ by F_{a}. Note that the restriction of F_{a} to \mathbb{N} need not be f in general. Our goal is to prove that each F_{a} is a constant function, with corresponding constant denoted by c_{a}. Once this is shown, we have

$$
\begin{equation*}
\frac{P(x)}{Q(x)}=\sum_{n=0}^{\infty} f(n) x^{n}=\sum_{a=0}^{M-1} c_{a} \sum_{j=0}^{\infty} x^{a+j M}=\sum_{a=0}^{M-1} \frac{c_{a} x^{a}}{1-x^{M}} \tag{3.5}
\end{equation*}
$$

and so $P(x) / Q(x)$ is a rational function with only simple poles, as desired.
It remains to show that each polynomial map $F_{a}: \mathbb{C} \rightarrow \mathbb{C}$ is a constant function. For each positive integer n, define

$$
\begin{equation*}
S_{n}=\left\{\beta_{s, t}^{(j)}(n): j \in \mathbb{N}\right\} \tag{3.6}
\end{equation*}
$$

We say that a has an infinite cross-section if $R_{a} \cap S_{n}$ is an infinite set for some $n \in \mathbb{N}$. We proceed by considering two cases, depending on whether a has an infinite cross-section or not

Case 1: Suppose a has an infinite cross-section, i.e., $R_{a} \cap S_{n}$ is an infinite set. Since $f(j)=f(s j+t)$ for all $j \in \mathbb{N}, F_{a}$ is constant on $R_{a} \cap S_{n}$. Since $R_{a} \cap S_{n}$ is an infinite set, F_{a} is a constant polynomial.

Case 2: Suppose a does not have an infinite cross-section, i.e., $R_{a} \cap S_{n}$ is finite for all positive integers n. Then $R_{a} \cap S_{n}$ must be nonempty for infinitely many values of n. Since there are only finitely many distinct sets of the form R_{b}, it follows that for each S_{n}, there exists $b \in \mathbb{N}$ such that $R_{b} \cap S_{n}$ is infinite. Moreover, since there are only finitely many choices for R_{b}, there is at least one $b \in \mathbb{N}$ such that there exist infinitely many values of n where $R_{a} \cap S_{n}$ is nonempty and $R_{b} \cap S_{n}$ is infinite. Since b has an infinite cross-section, an application of Case 1 demonstrates that the restriction of f to R_{b} is the constant function c_{b}. Since f is constant on each S_{n}, the restriction of f to S_{n} is the constant c_{b}. Thus F_{a} achieves the value c_{b} infinitely many times, and so F_{a} must be a constant polynomial.

Thus in either case, we have that F_{a} is a constant polynomial, and so the poles of R must be simple. Using this fact, we can decompose $R(x)$ using partial fractions:

$$
\begin{equation*}
R(x)=C(x)+\sum_{j=1}^{J} \frac{\alpha_{j}}{1-\lambda_{j} x} \tag{3.7}
\end{equation*}
$$

Via (2.8), an application of $\phi_{s, t}$ yields

$$
\begin{equation*}
R(x)=\phi_{s, t}(R(x))=\phi_{s, t}(C(x))+\sum_{j=1}^{J} \frac{\alpha_{j} \lambda_{j}^{t}}{1-\lambda_{j}^{s} x} . \tag{3.8}
\end{equation*}
$$

Each rational function has a unique decomposition, and since $\phi_{s, t}$ maps polynomials to polynomials,

$$
\begin{equation*}
C(x)=\phi_{s, t}(C(x)) \tag{3.9}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=1}^{J} \frac{\alpha_{j}}{1-\lambda_{j} x}=\sum_{j=1}^{J} \frac{\alpha_{j} \lambda_{j}^{t}}{1-\lambda_{j}^{s} x}=\phi_{s, t}\left(\sum_{j=1}^{J} \frac{\alpha_{j}}{1-\lambda_{j} x}\right) . \tag{3.10}
\end{equation*}
$$

If $t>0$, it is easy to see that no nonzero polynomial is fixed by $\phi_{s, t}$, in which case $C(x)=0$. If $t=0$, then the only polynomials fixed by $\phi_{s, t}$ are constant, and so $C(x)$ is a constant multiple of $\psi_{s, 0,0, n}=1$.

Now we only have left to show that the second summand in (3.7) is a linear combination of functions of the form $\psi_{s, t, r, n}$. To do this, we begin by showing that each r_{k} is distinguished
with respect to (s, t). We have already shown that r_{k} and s are relatively prime for each k. Using (2.9), multiple iterations of $\phi_{s, t}$ to (3.10) yield

$$
\begin{equation*}
\sum_{j=1}^{J} \frac{\alpha_{j}}{1-\lambda_{j} x}=\phi_{s, t}^{\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)}\left(\sum_{j=1}^{J} \frac{\alpha_{j}}{1-\lambda_{j} x}\right)=\sum_{j=1}^{J} \frac{\alpha_{j} \lambda_{j}^{\beta_{s, t}\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)}}{1-\lambda_{j}^{s^{\operatorname{Ord}\left(s, r_{k}\right)} x}} \tag{3.11}
\end{equation*}
$$

The term corresponding to $j=k$ in the first of these three expressions is

$$
\begin{equation*}
\frac{\alpha_{k}}{1-\lambda_{k} x}, \tag{3.12}
\end{equation*}
$$

and the corresponding term in the last of these three expressions is

$$
\begin{equation*}
\frac{\alpha_{k} \lambda_{k}^{\beta_{s, t}\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)}}{1-\lambda_{k}^{s^{\operatorname{Ord}\left(s, r_{k}\right)} x} x}=\frac{\alpha_{k} \lambda_{k}^{\beta_{s, t}\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)}}{1-\lambda_{k} x} . \tag{3.13}
\end{equation*}
$$

Thus

$$
\begin{equation*}
\lambda_{k}^{\beta_{s, t}\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)}=1 \tag{3.14}
\end{equation*}
$$

Therefore, $r_{k} \mid \beta_{s, t}\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)$, and so r_{k} is distinguished with respect to (s, t).
Now that we've shown that each r_{k} is distinguished with respect to (s, t), group terms in the sum

$$
\begin{equation*}
\sum_{j=1}^{J} \frac{\alpha_{j}}{1-\lambda_{j} x} \tag{3.15}
\end{equation*}
$$

according to the orbits of the map $z \mapsto z^{s}$ on the set $\left\{\lambda_{1}, \ldots, \lambda_{J}\right\}$. Since $r_{k} \mid \beta_{s, t}\left(\operatorname{Ord}\left(s ; r_{k}\right)\right)$ for each k, we know that the sum of terms in (3.15) corresponding to a single orbit must be of the form

$$
\begin{equation*}
\mathcal{O}(k)=\sum_{i=1}^{m} \phi_{s, t}^{(i)}\left(\frac{\alpha_{k}}{1-\lambda_{k} x}\right), \tag{3.16}
\end{equation*}
$$

where m is the length of the orbit of λ_{k} under the map $z \mapsto z^{s}$. That is, m is the smallest positive integer such that $\lambda_{k}^{s^{m}}=1$, and so $m=\operatorname{Ord}\left(s ; r_{k}\right)$. Moreover, λ_{k} is a primitive r_{k}-th root of unity, and so it must be of the form $\lambda_{k}=\left(\omega_{r_{k}}\right)^{n}$ for some $n \in \mathbb{N}$ such that r_{k} and n are relatively prime. Thus

$$
\begin{equation*}
\mathcal{O}(k)=\alpha_{k}\left(\sum_{i=1}^{\operatorname{Ord}\left(s, r_{k}\right)} \phi_{s, t}^{(i)}\left(\frac{1}{1-\omega_{r_{k}}^{n} x}\right)\right)=\alpha_{k} \psi_{s, t, r_{k}, n}(x), \tag{3.17}
\end{equation*}
$$

and so (3.15), and hence (3.7), is a linear combination of rational functions of the form $\psi_{s, t, r, n}$.

It turns out that the collection of rational functions of the form $\psi_{s, t, r, n}$ does not form a basis of fixed points. The lemma below shows that there is redundancy in the collection. Since cyclotomic cosets have many different representations, we must compare the ways in which $\psi_{s, t, r, n}$ and $\psi_{s, t, r, n^{\prime}}$ are defined for two distinct representations $C_{s, r, n}$ and $C_{s, r, n^{\prime}}$ of the same coset. Although we have not defined $\psi_{s, t, r, n}$ to be invariant with respect to different representations, they will be the same up a constant multiple.

Lemma 3.3. If $C_{s, r, n}=C_{s, r, n^{\prime}}$, then $\psi_{s, t, r, n}$ and $\psi_{s, t, r, n^{\prime}}$ are scalar multiples of one another.
Proof. With the aid of (2.6), we compute

$$
\begin{aligned}
\psi_{s, t, r, n s}(x) & =\sum_{j=1}^{\operatorname{Ord}(s, r)} \frac{\omega_{r}^{n s \beta_{s, t}(j)}}{1-\omega_{r}^{\operatorname{sns}} x} \\
& =\sum_{j=1}^{\operatorname{Ord}(s, r)} \frac{\omega_{r}^{n\left(\beta_{s, t}(j+1)-t\right)}}{1-\omega_{r}^{n j^{j+1}} x} \\
& =\omega_{r}^{-n t} \sum_{j=1}^{\operatorname{Ord}(s ; r)} \frac{\omega_{r}^{n \beta_{s, t}(j+1)}}{1-\omega_{r}^{n s^{j+1} x}} \\
& =\omega_{r}^{-n t} \sum_{j=1}^{\operatorname{Ord}(s ; r)} \phi_{s, t}^{(j+1)}\left(\frac{1}{1-\omega_{r}^{n} x}\right) \\
& =\omega_{r}^{-n t} \phi_{s, t}\left(\psi_{s, t, r, n}(x)\right) \\
& =\omega_{r}^{-n t} \psi_{s, t, r, n}(x)
\end{aligned}
$$

Thus $\psi_{s, t, r, s^{i} n}$ and $\psi_{s, t, r, n}$ are scalar multiples of one another for all $i \in \mathbb{N}$. If $C_{s, r, n}=C_{s, r, n^{\prime}}$, then for some $i \in \mathbb{N}$, we have $n^{\prime} \equiv s^{i} n \bmod r$. By this equivalence, $\psi_{s, t, r, n^{\prime}}=\psi_{s, t, r, s^{i} n}$, and so the result follows.

Using Lemma 3.3, we can show that if two of functions of the form $\psi_{s, t, r, n}$ have a pole in common, then they are actually the same up to a scalar multiple. The following lemma leads us this result.

Lemma 3.4. Suppose r_{i} is a positive integer that is distinguished with respect to (s, t), and n_{i} is a positive integer relatively prime to r_{i} for $i=1,2$. If $\psi_{s, t, r_{1}, n_{1}}$ and $\psi_{s, t, r_{2}, n_{2}}$ have a pole in common, then $r_{1}=r_{2}$ and $C_{s, r_{1}, n_{1}}=C_{s, r_{2}, n_{2}}$.

Proof. Note that $\psi_{s, t, r, n}$ has poles at $\omega_{r}^{-n s^{j}}$ for $0 \leq j \leq \operatorname{Ord}(s ; r)$; that is, $\psi_{s, t, r, n}$ has poles at ω_{r}^{-c} where $c \in C_{s, r, n}$. Suppose $\psi_{s, t, r_{1}, n_{1}}$ and $\psi_{s, t, r_{2}, n_{2}}$ have a pole in common; that is, $e^{-2 \pi i c_{1} / r_{1}}=e^{-2 \pi i c_{2} / r_{2}}$, where $c_{i} \in C_{s, r_{i}, n_{i}}$. Thus, $c_{1} / r_{1}-c_{2} / r_{2} \in \mathbb{Z}$. Without loss of generality, we can choose $1 \leq c_{i}<r_{i}$, in which case $0<c_{1} / r_{1}<1$, and so $c_{1} / r_{1}=c_{2} / r_{2}$. Since $\operatorname{gcd}\left(r_{i}, n_{i}\right)=1$ and $c_{i}=s^{j_{i}} n_{i} \bmod r_{i}$ for some $j_{i} \in \mathbb{N}$, it follows that c_{i} and r_{i} are relatively prime, and so $c_{1}=c_{2}$ and $r_{1}=r_{2}$. Therefore, $s^{j_{1}} n_{1}=s^{j_{2}} n_{2} \bmod r\left(\right.$ where $\left.r=r_{1}=r_{2}\right)$, and so $C_{s, r, n_{1}}=C_{s, r, n_{2}}$.

We now precisely describe the redundancy in the collection $\left\{\psi_{s, t, r, n}\right\}$ for fixed s and t. We begin by defining an equivalence relation $\sim_{s, r}$ on $\left(C_{s, r, n}-\{0\}\right)$ by $n_{1} \sim_{s, r} n_{2}$ if $C_{s, r, n_{1}}=C_{s, r, n_{2}}$. Let $\Lambda_{s, r}$ be a collection of coset representatives (all chosen to be less than $r)$ of $\left(C_{s, r, n}-\{0\}\right) / \sim_{s, r}$. That is, $\Lambda_{s, r}$ is maximal set consisting of positive integers such that no two are in the same cyclotomic coset.

Theorem 3.5. Suppose $s \geq 2$ and $0 \leq t \leq s-2$. The function $1 /(1-x)$ together with the collection of all $\psi_{s, t, r, n}$ where r is distinguished with respect to (s, t) and $n \in \Lambda_{s, r}$ form a basis for the set of all rational functions that are fixed points of $\phi_{s, t}$.

Proof. The case $n=0$ corresponds to the function $1 /(1-x)$. We now consider the case $n>0$. Given an integer r that is distinguished with respect to (s, t), and an integer n that is relatively prime to r, there exists $n^{\prime} \in \Lambda_{s, r}$ such that $C_{s, r, n}=C_{s, r, n^{\prime}}$, in which case by Lemma 3.3, $\psi_{s, t, r, n}$ and $\psi_{s, t, r, n^{\prime}}$ are scalar multiples of one another. Thus, by Proposition 3.2, this collection spans the space of rational functions fixed by $\phi_{s, t}$.

Suppose $\psi_{s, t, r_{1}, n_{1}}$ and $\psi_{s, t, r_{2}, n_{2}}$ have a pole in common where $n_{i} \in \Lambda_{s, r_{i}}$. Then by Lemma 3.4, $r_{1}=r_{2}$ and $C_{s, r_{1}, n_{1}}=C_{s, r_{2}, n_{2}}$. Thus by the definition of $\Lambda_{s, r_{1}}=\Lambda_{s, r_{2}}, n_{1}=n_{2}$. Therefore, none of the elements of the collection have a pole in common, and so no nontrivial linear combination of elements of this collection can be zero.

References

[1] G. Boros, J. Little, V. Moll, E. Mosteig, R. Stanley, A map on the space of rational functions, Rocky Mountain Journal of Mathematics. 35 (2005), 1861-1880.
[2] G. Boros, V. Moll, Landen transformations and the integration of rational functions, Mathematics of Computation. 71 (2002), 649-668.
[3] J. Gil, S. Robins, Hecke operators on rational functions. I., Forum Mathematicum. 17 (2005), no. 4, 519-554.
[4] V. Moll, The evaluation of integrals: a personal story, Notices of the AMS. 49 (2002), 311-317.
[5] R. Stanley, Enumerative Combinatorics, Volume 1, Cambridge Studies in Advanced Mathematics, Cambridge University Press, 1997.

