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Eötvös Loránd University,
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Abstract

Let G be a finite abelian group and E a subset of it. Suppose that we know for all subsets T of G of size up to
k for how many x ∈ G the translate x + T is contained in E. This information is collectively called the k-deck of
E. One can naturally extend the domain of definition of the k-deck to include functions on G. Given the group G
when is the k-deck of a set in G sufficient to determine the set up to translation? The 2-deck is not sufficient (even
when we allow for reflection of the set, which does not change the 2-deck) and the first interesting case is k = 3. We
further restrict G to be cyclic and determine the values of n for which the 3-deck of a subset of Zn is sufficient to
determine the set up to translation. This completes the work begun by Grünbaum and Moore [GM] as far as the
3-deck is concerned. We additionally estimate from above the probability that for a random subset of Zn there exists
another subset, not a translate of the first, with the same 3-deck. We give an exponentially small upper bound when
the previously known one was O(1

‹√
n).

1 Introduction to the problem and results

Let G be a finite abelian group, written additively, and f : G → R be a function. For k ≥ 2
we define the k-deck or k-th order correlation of f as the function

Nf,k : Gk−1 → R

defined by

Nf,k(x1, . . . , xk−1) =
∑
x∈G

f(x)f(x + x1) · · · f(x + xk−1). (1)

When E ⊆ G and f(x) = χE(x) is the indicator function of E we also write NE,k in place
of Nf,k. In this case, of f = χE, it is easy to see that the number NE,k(x1, x2, . . . , xk−1) is
precisely the number of times the pattern

0, x1, . . . , xk−1
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can be translated by an arbitrary element of G to be contained in E. In particular NE,2

determines the difference multiset E−E of E. The k-deck may also be defined on an arbitrary
locally compact abelian group, provided we replace the summation in the definition above
with integration with respect to Haar measure.

As our primary interest is in indicator functions, we will mainly consider nonnegative
functions f . Another reason for considering only real functions is to avoid the extra com-
plication due to the fact that the functions f and ωf have the same k-deck whenever ω is a
k-th root of unity.

It is evident that the functions f(x) and ft(x) = f(x − t) have the same k-decks for all
values of k. The problem we discuss in this paper is the following:

Is the function f : G → R+ determined up to translation if we know its k-deck?
What if the same question is asked for indicator functions?

It is not hard to see that for k = 2, and even for indicator functions, the answer is negative.
Indeed, suppose that we have two sets A, B ⊆ G such that −B is not a translate of B and
suppose also that the multisets E = A + B and F = A − B are actually sets. Take for
example G = Z101 (the cyclic group of 101 elements), A = {0, 10, 20, 30} and B = {0, 1, 3}.
Then it is easy to see that the sets E and F have the same 2-deck but are not necessarily
translates of each other, e.g. in the example we mentioned.

In this paper we will restrict ourselves to finite cyclic groups and the emphasis will be on
the 3-deck or triple correlation. This problem is of significance in several fields of applied
science, for example crystallography and signal processing [Pet]. Another example is the
method of speckle masking in atronomical imaging [LWW], where an averaged triple corre-
lation of two-dimensional observation images taken in quick succession is inverted to obtain
a sharper image. This process gets rid of interference due to slowly-varying inhomogeneities
in the atmosphere and is apparently quite successful. For further applications see [JK] and
the references therein.

Our problem is most naturally studied with the use of the Fourier Transform on G,

defined for any function f : G → C as a function f̂ on Γ, the group of characters of G (group
homomorphisms into the multiplicative group {z ∈ C : |z| = 1}), given by

f̂(γ) =
∑
x∈G

f(x)γ(x).

In the particular case of interest to us when G = Zn is the cyclic group of n elements then

its dual group Γ is also isomorphic to Zn and the FT of f : Zn → C is a function f̂ : Zn → C
given by

f̂(k) =
n−1∑
j=0

f(j)ζ−jk
n , k = 0, . . . , n− 1,

where ζn = exp(2πi/n) is a primitive n-th root of unity.
It is easy to see that the Fourier Transform of the function Nf,k : Gk−1 → R+, the function

N̂f,k : Γk−1 → C, is given by

N̂f,k(ξ1, . . . , ξk−1) = f̂(ξ1) · · · f̂(ξk−1)f̂(ξ1 + · · ·+ ξk−1)

= f̂(ξ1) · · · f̂(ξk−1)f̂(−(ξ1 + · · ·+ ξk−1)) since f is real. (2)
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This implies that

Nf,k ≡ Ng,k ⇐⇒
(
ξ1 + . . . + ξk = 0 =⇒ f̂(ξ1) · · · f̂(ξk) = ĝ(ξ1) · · · ĝ(ξk)

)
. (3)

In particular, if Nf,k ≡ Ng,k for two nonnegative functions f and g on G, we immediately

get f̂(0) = ĝ(0) by setting all ξj = 0. It is also clear that Nf,k ≡ Ng,k for nonnegative f and
g implies Nf,r ≡ Ng,r for all 2 ≤ r ≤ k − 1 as well, so that identity of the k-decks implies
the identity of all lower order r-decks. Choosing ξ1 = −ξ2 = ξ and ξj = 0 for j ≥ 3 we

get
∣∣∣f̂(ξ)

∣∣∣ = |ĝ(ξ)|. Note that if k is odd then we get
∣∣∣f̂ ∣∣∣ ≡ |ĝ| even for two arbitrary real

functions f and g on G with Nf,k = Ng,k if f̂(0) 6= 0 or ĝ(0) 6= 0. Furthermore, if k = 3 and

if we know that f̂ has no zeros on Γ it follows using (2) that the ratio f̂
/
ĝ is a map from G

to the unit circle which is a group homomorphism, and this is equivalent to the function f
being a translate of the function g.

This reveals the fact that the main difficulty in the study of this problem is the existence of
zeros in the Fourier Transform of the function whose k-deck we know. Consider for example
the case of the group G = Zp, p a prime. It is well known that the linear rank over Q of the
set of p-th roots of unity is p− 1, and this implies that any non-trivial Q-linear combination
of at most p−1 such roots cannot vanish. In other words, if we have a non-constant function
f : Zp → Q (e.g. the indicator function of a non-trivial subset of Zp), then its FT never
vanishes on Zp (which is the dual group of itself). By the previous discussion then the 3-deck
of any function f : Zp → Q determines f up to translation [RS1].

The question of whether Nf,k determines f up to translation depends both on the group
G on which f is defined as well as on assumed properties of f . The main cases of interest are
when (a) f is any nonnegative function, (b) f is a rational-valued function, possibly restricted
to be nonnegative, and (c) f is an indicator function. It is not hard to see, for instance, that
on the group R there are, for every k, nonnegative functions which are not determined up
to translation from their k-deck [JK]. The same question is open if one demands that f is
an indicator function of set of finite measure although the answer is known to be positive in
certain special cases of sets [JK]. On the other hand even the 3-deck determines a function
f ∈ L1(R) if it is of compact support [JK].

1.1 Previous results

In the case of cyclic groups the most significant work is that of Grünbaum and Moore [GM].
This work seems largely to have gone unnoticed in the mathematical literature although it
solves the most important cases of the problem for cyclic groups. This is probably due to
the fact that it was published in a Crystallography journal. The following is a summary of
the results in [GM] regarding reconstructing f on Zn from its k-deck. Notice that in [GM]
it is assumed at the outset that all functions to be reconstructed from their k-deck have a
non-zero sum over the group.

1. For any n, if f and g are rational-valued functions on Zn with the same 6-deck then
they are translates of each other [GM, Theorem 4].

2. If n is even and at least 30 then there are sets E, F ⊆ Zn which have the same 3-deck
but are not translates of each other [GM, §5.3].
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3. If n is odd, f and g are rational-valued functions on Zn with the same 3-deck and

f̂(1) 6= 0 then f and g are translates of each other [GM, Theorem 3]. This is heavily
based on a result of Lenstra [L] (see our §2.1).

4. For any n suppose that f is a rational-valued function on Zn and E ⊆ Zn, g = χE.

Then if f and g have the same 4-deck and f̂(1) 6= 0 it follows that f and g are translates

of each other [GM, Theorem 5]. It is suggested in [GM] that the condition f̂(1) 6= 0
may be unnecessary.

5. There is no value of k such that for all n the equality of the k-deck of two real functions
f and g on Zn implies that they are translates of each other [GM, §8.2].

6. If n = pqr, with p and q distinct primes, and r > 1 is an integer then there are two

rational-valued functions f and g on Zn which have the same 3-deck, satisfy f̂(1) =
ĝ(1) = 0, and are not translates of each other [GM, §5.2].

Radcliffe and Scott [RS2] study the problem for infinite subsets of R which are subject
to some sort of “local finiteness” and prove reconstructibility from the 3-deck. In [RS1] the
same authors prove reconstructibility up to translation from the 3-deck in Zp, p a prime,
show that almost all subsets of Zn are determined up to translation by their 3-deck and show
that any set in Zn is determined up to translation by its k-deck with k being 9 times the
number of distinct prime factors of n.

Pebody, Radcliffe and Scott [PRS] study a variation of the problem. They prove that any
finite subset E of the plane can be reconstructed up to rigid motion if one knows for any
subset A of the plane of up to 18 points how many rigid-motion copies of A are to be found
in E.

Jaming and Kolountzakis [JK] study the problem both in the case of the group R and
in cyclic groups. In the case of R it is pointed out that several conditions which guarantee

some sort of analyticity of f̂ are enough to imply that the 3-deck of f determines f up to
translation. It is shown that for every k there exist two nonnegative, smooth f, g ∈ L1(R)
with the same k-deck, which are not translates of each other. In fact for some such f there
exist even uncountably many, translation inequivalent, functions g which have the same
k-deck as f .

It is also proved in [JK] that if E ⊆ R has finite measure, g ∈ L1(R) is nonnegative and
χE and g have the same 3-deck, then g is itself an indicator function. Although it is still an
open problem whether any E ⊆ R of finite measure is determined up to translation from its
3-deck, it is proved in [JK] that if E is an open set with gaps bounded below (write E as a
disjoint collection of open intervals and look at the gaps so defined) then E is determined
from its 3-deck.

In the case of the cyclic group Zn it is proved in [JK, Theorem 3.1 and following Remark]
that when n = pα, p a prime larger than 2, then the 3-deck of a set in Zn determines the
set up to translation. It is also shown that if n = 2α then the 4-deck of a set determines
the set up to translation (and this is mistakenly attributed to [GM]). In [JK, Theorem 3.2]
it is erroneously claimed that if n = pq with p and q two distinct primes then the 3-deck
is enough to reconstruct a set in Zn. Given the results of [GM] summarized above, the
condition p, q > 2 clearly needs to be added and then the theorem is correct. A corrected
proof is given in our §2. The attempt, at the end of [JK], to explain the examples given by
Grünbaum and Moore for the case n = pqr (see summary above) is also erroneous.
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Pebody [P] defines r(G) (resp. rset(G)) the minimum k such that the k-deck of a non-
negative rational-valued function on G (resp. subset of G) determines the function (resp.
set) up to translation. Improving results for the cyclic group of Alon, Caro, Krasikov and
Roditty [ACKR] and Radcliffe and Scott [RS1], Pebody, computes the number r(G) for all
finite abelian G and his result implies r(Zn) ≤ 6. For the cyclic groups the result had already
been proved in [GM]. In particular, Pebody gets that the 3-deck determines all nonnegative
rational valued functions up to translation on the cyclic group Zn (n ≥ 3) if and only if n is
a power of an odd prime or the product of two odd primes.

1.2 New results

In §2 we complete the characterization of those finite cyclic groups in which the 3-deck
determines any subset up to translation. We show that

1. If n = p2q, with p and q distinct odd primes then any subset of Zn can be determined
up to translation from its 3-deck (Theorem 2.1).

2. The same is true if n = pqr, with p, q, r distinct odd primes (Theorem 2.1).

3. If n = pqrd, with p, q distinct primes and r, d > 1, then there are two subsets E and F
of Zn with the same 3-deck which are not translates of each other (Theorem 2.23).

4. If n = 2k, k ≥ 6, we give two subsets E and F of Zn, not translates of each other,
which have the same 3-deck (Theorem 2.22). This result subsumes the above mentioned
result of [GM] (for even n, n ≥ 30) and, we think, our examples are much easier to
understand.

If n is even and at most 10 we show that there are no such examples (Proposition 2.21).

Thus we get the following.

Corollary 1.1. Every subset of the cyclic group Zn can be determined up to translation from
its 3-deck if and only if n is a power of an odd prime or n is the product of at most three
(not necessarily distinct) odd primes or n ∈ {2, 4, 6, 8, 10}.

Remark 1.2. As we were finishing this paper we came across a manuscript by Pebody [P2]
where the cases of odd n for which the 3-deck is sufficient are also determined. Our work
was done independently and, apparently, almost simultaneously.

Comparing Corollary 1.1 to the last mentioned special case of the result of Pebody [P] in
the previous subsection, we observe that the analogous characterization of the “good” values
of n is different if we consider nonnegative rational valued functions instead of subsets.

Key to our results are theorems which significantly restrict the zero set of the Fourier
Transform of indicator functions of subsets of certain cyclic groups. See for instance Lemma 2.18.

In §3 we study the number of subsets of Zn which are not determined by their 3-deck up to
translation. In [RS1] Radcliffe and Scott had already shown that this number is O(2n/

√
n)

as n → ∞. We show that this number is in fact much smaller, namely O(2−Cεn1−ε
2n), for

any fixed ε > 0 (Theorem 3.4).
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2 For which cyclic groups the 3-deck determines a set up to trans-
lation

2.1 Positive results

The main result of this subsection is the following:

Theorem 2.1. Let n be a power of an odd prime or the product of at most three (not
necessarily distinct) odd primes. Then every subset of Zn is uniquely determined up to
translation by its 3-deck.

For completeness and because it needs no extra effort, our proof will cover not only the
new results but also the known ones. We shall use only the same theorem of H. W. Lenstra
that was used by Grünbaum and Moore in [GM]:

Lenstra’s Theorem [L]. If N is an odd integer, and m and N are coprime then there
exists a finite sequence x1, . . . , xl of relative primes to N such that x1 = 1, xl = m and every
member except the first is the sum or difference of two not necessarily different previous
members of the sequence.

As we saw in the Introduction, the 3-deck determines a nonnegative function up to trans-
lation if its Fourier Transform has no zero. We shall show that if n is a power of an odd
prime or n is the product of at most three (not necessarily distinct) odd primes then the
support of the Fourier Transform of a characteristic function on Zn is always rich enough to
get the same conclusion. Our method can be considered as a generalization of the methods
in [GM] and [JK].

The concept of extendable domain, defined below, is central to the problem and the
techniques of this paper. In fact, this is the right notion for what we called “rich enough”
in the previous paragraph.

Definition 2.2. We say that A ⊂ Zn is an extendable domain if for every h : A → R/Z
additive (by which we mean that h(x + y) = h(x) + h(y) whenever x, y, x + y ∈ A) function
there exists an L ∈ R such that h(k) = Lk (mod 1) for every k ∈ A.

Reconstructing f (up to translation) from its 3-deck is simple if supp f̂ is an extendable
domain.

Lemma 2.3. (1) If f and g are nonnegative functions on Zn with the same 3-deck and

supp f̂ is an extendable domain then f and g are translates of each other.

(2) If f and g are real valued functions on Zn with the same 3-deck, f̂(0) 6= 0 or ĝ(0) 6= 0

and supp f̂ is an extendable domain then f and g are translates of each other.

Proof. Suppose that f and g satisfy the conditions of (1) or (2). We saw in the Introduction

that in these cases having the same 3-deck implies that f̂ and ĝ have the same modulus.

Hence there exists a function h : supp f̂ → R/Z such that ĝ(l) = e2πih(l)f̂(l). Substituting

this to (3) we get that h must be additive as defined in Definition 2.2. Then, since supp f̂
is an extendable domain, h must be linear, thus e2πih(l) is the restriction of a character to

supp f̂ , and so f and g are translates of each other.

Therefore, to prove Theorem 2.1 it is enough to prove the following:
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Proposition 2.4. If n is a power of an odd prime or n is the product of at most three (not
necessarily distinct) odd primes then the support of the Fourier Transform of a characteristic
function on Zn is always an extendable domain.

To prove this proposition we need several facts and lemmas, some of which may be
known and/or interesting in themselves. The following five facts are surely known but for
completeness, and because it is easier to prove them than to find them in the literature, we
present their proofs.

Notation 2.5. Let (k, l) denote the greatest common divisor of k and l. For a|n let

〈a〉n = {k ∈ Zn : (k, n) = a} and

aZn =
{

0, a, 2a, . . . ,
(n

a
− 1
)

a
}
⊂ Zn.

Fact 2.6. If f : Zn → Q then supp f̂ is the union of sets of the form 〈a〉n for some a|n.

Proof. We can write f̂(k) =
∑n−1

j=0 f(j)ζj
n,k, where ζn,k = e−2πik/n is the k-th root of unity of

order n. The right hand side is a rational polynomial evaluated at the roots of unity. It is
well known that ζn,k is an algebraic conjugate of ζn,l over Q if and only if (n, k) = (n, l).

Fact 2.7. For a|n a function f : Zn → C is a-periodic if and only if supp f̂ ⊂ n
a
Zn.

Proof. The space of a-periodic functions on Zn has dimension a and it is clearly spanned by

the characters χl(j) = e2πi ln
a

j, l = 0, 1, . . . , a− 1.

Fact 2.8. For a function f : Zn → C we have supp f̂ ⊂ a1Zn ∪ . . . ∪ akZn if and only if f
can be written in the form f = f1 + . . .+ fk, where fj : Zn → C is n

aj
-periodic (j = 1, . . . , k).

Proof. The splitting f =
∑

fj is accomplished by arbitrarily splitting f̂ =
∑

f̂j, in a way

that f̂j is supported on ajZn, inverting the Fourier Transform and using Fact 2.7.

Fact 2.9. If n is odd then any integer k can be written as k = a+b where (a, n) = (b, n) = 1.

Proof. We can clearly assume that n is squarefree; that is, it is of the form n = p1 · · · pr, where
p1, . . . , pr are distinct primes. For each j = 1, . . . , r let aj = 2 and bj = −1 if k = 1 (mod pj)
and let aj = 1 and bj = k − 1 otherwise. By the Chinese Remainder theorem there exist a
and b such that a = aj (mod pj) and b = bj (mod pj) for j = 1, . . . , r. Now a+b = k (mod pj)
for each j = 1, . . . , r, so a + b = k (mod n). By choosing a properly, by which we mean that
we add a multiple of n to a if necessary, we can guarantee that a+ b = k. Since each pj > 2,
we have aj, bj 6= 0 (mod pj), so (a, n) = (b, n) = 1.

Fact 2.10. If there are two equivalence relations on a set such that both contain at least two
classes then there exist two elements which are inequivalent w.r.t. both relations.

Proof. If not then any two elements which are inequivalent w.r.t. the first relation should
be equivalent w.r.t. the second. This easily implies that there is only one equivalence class
w.r.t. the second relation, a contradiction.

The following will be used repeatedly in the sequel.
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Lemma 2.11. If a is a divisor of the odd n and 〈a〉n ⊂ A ⊂ aZn then A is an extendable
domain.

Proof. Let h : A → R/Z be an additive function. It is enough to prove that

m ∈ Z, ma ∈ A =⇒ h(ma) = mh(a) (mod 1), (4)

since then for any L ∈ R such that h(a) = La (mod 1) we get that h(ma) = mh(a) =
Lma (mod 1), which is exactly what we want to show.

Let N = n/a. Note that ma ∈ 〈a〉n holds if and only if m and N are coprime. Using the
previously stated Lenstra’s Theorem for N = n/a and an m such that m and N are coprime
we get a sequence x1, . . . , xl of relative primes to N such that x1 = 1, xl = m and every
member except the first is the sum or difference of two not necessarily different previous
members of the sequence. Note that, since xi and n/a are coprime, xia ∈ 〈a〉n ⊂ A for each
i. Then by induction we get that h(xia) = xih(a), and so (4) holds whenever m and n/a are
coprime. Then (4) in the general case follows by using Fact 2.9.

Corollary 2.12. If n is odd, f : Zn → Q and a ∈ supp f̂ ⊂ aZn then supp f̂ is an extendable
domain.

In particular, the following two statements hold:

(i) If n is odd, f : Zn → Q and f̂(1) 6= 0 then supp f̂ is an extendable domain.

(ii) If n is a power of an odd prime and f : Zn → Q then supp f̂ is an extendable domain.

Proof. The first statement follows immediately from Lemma 2.11 and Fact 2.6. If a = 1
then we get (i). Statement (ii) is also a special case of the first statement since if n = pk and

l is minimal such that pl ∈ supp f̂ then pl ∈ supp f̂ ⊂ plZn. �

The next lemma shows that the sum of two periodic functions with coprime periods
cannot have too small a range.

Lemma 2.13. If χE = fa + fb, and fa and fb are periodic Z → C functions with coprime
periods a and b then χE is periodic with period a or b.

Proof. Using the periodicity and χE = fa + fb, for any k, n, l ∈ N we get

fb(ak + bn + l) = fb(ak + l) = χE(ak + l)− fa(ak + l) = χE(ak + l)− fa(l). (5)

Since a and b are coprime, for any fixed l ∈ Z every integer can be written in the form
ak + bn + l. Thus (5) implies that for any fixed l ∈ Z the range of fb is a subset of
Rl = {−fa(l), 1− fa(l)}, as witnessed by the right hand side of (5).

If fb is a constant function then we have the desired conclusion as χE is then a-periodic.
If fb is not a constant then the range of fb is equal to the set Rl, for any integer l, and this
implies that Rl is independent of l, or, in other words, that fa is a constant. In that case χE

is b-periodic.

Lemma 2.14. Suppose that a and b are divisors of n, n/a and n/b are coprime, E ⊂ Zn,
and supp χ̂E ⊂ aZn ∪ bZn. Then supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.

Proof. By Fact 2.8, supp χ̂E ⊂ aZn ∪ bZn implies the existence of an n/a-periodic function
f and an n/b periodic function g such that χE = f + g. Since n/a and n/b are coprime, by
Lemma 2.13, we get that χE must be n/a-periodic or n/b periodic. By Fact 2.7, this implies
that supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.
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Lemma 2.15. Suppose that a and b are coprime divisors of n, E ⊂ Zn,

supp χ̂E ⊂ (aZn ∪ bZn \ abZn) ∪ {0}.

Then supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.

Proof. Let c = n
ab

. By Fact 2.8, supp χ̂E ⊂ aZn ∪ bZn implies that χE can be written in the
form χE = fa + fb, where fa is bc-periodic and fb is ac-periodic. Applying Lemma 2.13 we
get that for each t = 0, 1, . . . , c − 1 the function χE(kc + t) is a-periodic or b-periodic. Let
mt be the number of points of the form kc + t in E. Then

mt ∈ {0, 1, . . . , ab} is divisible by a or b;

by a if χE(kc + t) is b-periodic and by b if χE(kc + t) is a-periodic. (6)

A straightforward calculation shows that for any s ∈ Z

χ̂E(sab) =
c−1∑
t=0

mt

(
e

2πis
c

)t

.

Since we assumed that χ̂E(sab) = 0 for s = 1, . . . , c − 1, we get that the c − 1 c-th roots

of unity e
2πis

c (s = 1, . . . , c − 1) are all roots of the (c − 1)-th order polynomial
∑c−1

t=0 mtz
t.

Hence
∑c−1

t=0 mtz
t must be a constant multiple of Πc−1

s=1(z − e
2πis

c ) =
∑c−1

t=0 zt and so all mt

must be the same. Using (6) and that a and b are coprime this implies that χE(kc + t) is
a-periodic for each t or b-periodic for each t. Thus χE is ac-periodic or bc-periodic hence, by
Fact 2.7, supp χ̂E ⊂ aZn or supp χ̂E ⊂ bZn.

Lemma 2.16. If a and b are coprime divisors of the odd n and 〈a〉n ∪ 〈b〉n ∪ {ab} ⊂ A ⊂
aZn ∪ bZn then A is an extendable domain.

Proof. Let h : A → R/Z be an additive function. We have to find an L ∈ R such that
h(k) = Lk (mod 1) for every k ∈ A.

By Lemma 2.11, A ∩ aZn and A ∩ bZn are extendable domains, so there exist La and Lb

such that

h(k) = Lak (mod 1) if k ∈ A∩ aZn, and h(k) = Lbk (mod 1) if k ∈ A∩ bZn. (7)

Note that for any u, v ∈ Z, La can be replaced by La + u
a

and Lb can be replaced by Lb + v
b

in (7). Thus it is enough to find u, v ∈ Z such that La + u
a

= Lb + v
b
, which is equivalent to

ub− va = Laab− Lbab. (8)

Using ab ∈ A and (7), we get Laab = h(ab) = Lbab (mod 1), so Laab − Lbab ∈ Z. Then,
since a and b are coprime, there exists u, v ∈ Z for which (8) holds, which completes the
proof.

In the sequel we shall use Fact 2.6 in the proofs many times without explicitly citing it.

Lemma 2.17. Let the odd n = pqd, where p and q are two distinct primes, and d is a prime
or d = 1. If E ⊂ Zn and supp χ̂E ⊂ pZn ∪ qZn then supp χ̂E is an extendable domain.
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Proof. If p, q ∈ supp χ̂E then, applying Lemma 2.15 for a = p, b = q, we get that supp χ̂E ∩
pqZn 6= {0}, which implies that pq ∈ supp χ̂E. Then we can apply Lemma 2.16 to get that
supp χ̂E is indeed an extendable domain.

So we can suppose by symmetry that q 6∈ supp χ̂E. Then supp χ̂E ⊂ pZn ∪ qZn implies
that supp χ̂E ⊂ pZn ∪ qdZn. Then, in case of d 6= p by Lemma 2.14, in case of d = p clearly,
we have supp χ̂E ⊂ pZn or supp χ̂E ⊂ qdZn.

If supp χ̂E ⊂ qdZn then supp χ̂E = 〈qd〉n ∪ {0} or supp χ̂E = {0}, so we are done by
Lemma 2.11.

So we can suppose that {0} 6= supp χ̂E ⊂ pZn. If p ∈ supp χ̂E then by Corollary 2.12
supp χ̂E is an extendable domain, so we can suppose that p 6∈ supp χ̂E. Then, by Fact 2.6,
supp χ̂E can be only 〈pd〉n ∪ {0} or 〈pq〉n ∪ {0} or 〈pq〉n ∪ 〈pd〉n ∪ {0} with d 6= 1, q. The
last case is impossible by Lemma 2.14 (for a = pq, b = pd), while in the first two cases
Lemma 2.11 implies that supp χ̂E is an extendable domain.

The following lemma about the possible support of the Fourier Transform of characteristic
functions on Zn is the key for handling the hardest case when n is the product of three distinct
primes. This statement might be useful in other applications, too.

Lemma 2.18. Suppose p, q and r are pairwise coprime, but not necessarily primes. Let
n = pqr and let E ⊂ Zn. Then

p, q ∈ supp χ̂E ⊂ pZn ∪ qZn ∪ rZn =⇒ (∃z ∈ {1, 2, . . . , r − 1}) zpq ∈ supp χ̂E.

Proof. Suppose that for each z = 1, 2, . . . , r − 1 we have

0 = χ̂E(zpq) =
r−1∑
c=0

pq−1∑
k=0

χE(kr + c)e−2πi
(kr+c)zpq

pqr =
r−1∑
c=0

(
pq−1∑
k=0

χE(kr + c)

)(
e−2πi z

r

)c
.

This implies that
∑pq−1

k=0 χE(kr + c) must be the same for each c ∈ Zr; that is,

pq−1∑
k=0

χE(kr + c1)− χE(kr + c2) = 0 (c1, c2 ∈ Zr). (9)

For each j ∈ Zn (n = pqr) let (aj, bj, cj) ∈ Zp × Zq × Zr be the unique triple such that

j = aj mod p, j = bj mod q and j = cj mod r,

and let φ be the inverse of the above Zn → Zp × Zq × Zr bijections; that is, φ(a, b, c)
(a ∈ Zp, b ∈ Zq, c ∈ Zr) is the unique element of Zn for which

φ(a, b, c) = a mod p, φ(a, b, c) = b mod q and φ(a, b, c) = c mod r.

Since supp χ̂E ⊂ pZn ∪ qZn ∪ rZn, χE can be written as χE = f + g + h, where f is
qr-periodic, g is pr periodic and h is pq-periodic.

Since f is qr-periodic, f(φ(a, b, c)) does not depend on a, so f ◦ φ can be written in the
form f(φ(a, b, c)) = F (b, c). Similarly g ◦φ and h ◦φ can be written as g(φ(a, b, c)) = G(a, c)
and h(φ(a, b, c)) = H(a, b). So using the notation E ′ = φ−1(E) ⊂ Zp × Zq × Zr we get that

χE′(a, b, c) = F (b, c) + G(a, c) + H(a, b) a ∈ Zp, b ∈ Zq, c ∈ Zr.
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We claim that there exist c1, c2 ∈ Zr such that neither the Zq → R function F (· , c1) −
F (· , c2), nor the Zp → R function G(· , c1)−G(· , c2) is constant. Indeed, F (· , c1)− F (· , c2)
being constant defines an equivalence relation on Zr and so does G(· , c1) − G(· , c2) being
constant. If there is only one equivalence class w.r.t. the first relation then F can be written
as F (b, c) = u(b) + v(c) which implies

χE(j) = χE′(aj, bj, cj) = v(cj) + G(aj, cj) + u(bj) + H(aj, bj),

and this would in turn imply χ̂E(p) = 0, contradicting our assumption. Hence there are at
least two classes w.r.t. the first relation. Similarly there are two classes w.r.t. the second
relation and using Fact 2.10 we obtain our claim.

On the other hand, since

(F (b, c1)− F (b, c2)) + (G(a, c1)−G(a, c2)) = χE′(a, b, c1)− χE′(a, b, c2) ∈ {−1, 0, 1}

for any a ∈ Zp, b ∈ Zq, we have

Range(F (· , c1)− F (· , c2)) + Range(G(· , c1)−G(· , c2)) ⊂ {−1, 0, 1}.

Since by the previous paragraph Range(F (· , c1) − F (· c2)) and Range(G(· , c1) − G(· , c2))
have at least two elements, this implies that they must be of the form

Range(F (· , c1)− F (· , c2)) = {A, A + 1},

Range(G(· , c1)−G(· , c2)) = {−A,−A− 1}
for some A ∈ R.

Let l1 ∈ {1, . . . , q−1} be the number of elements b ∈ Zq for which F (b, c1)−F (b, c2)) = A
and l2 ∈ {1, . . . , p−1} be the number of elements a ∈ Zp for which G(a, c1)−G(a, c2)) = −A.

Then, combining this with (9) we get

0 =

pq−1∑
k=0

χE(kr + c1)− χE(kr + c2)

=
∑
a∈Zp

∑
b∈Zq

χE′(a, b, c1)− χE′(a, b, c2)

=
∑
a∈Zp

∑
b∈Zq

F (b, c1)− F (b, c2) + G(a, c1)−G(a, c2)

= pl1A + p(q − l1)(A + 1) + ql2(−A) + q(p− l2)(−A− 1)

= −l1p + l2q,

which is a contradiction since l1p cannot be divisible by q.

Lemma 2.19. Let n = pqr with p, q, r three distinct primes, E ⊂ Zn. Then

p, q, r ∈ supp χ̂E ⊂ pZn ∪ qZn ∪ rZn =⇒ supp χ̂E = pZn ∪ qZn ∪ rZn.

Proof. Suppose that p, q, r ∈ supp χ̂E ⊂ pZn ∪ qZn ∪ rZn. By Lemma 2.18 we have 〈pq〉n ∪
〈pr〉n∪〈qr〉n ⊂ supp χ̂E. Since E cannot be empty, 〈pqr〉n ⊂ supp χ̂E. Since pZn∪qZn∪qZn =
〈p〉n ∪ 〈q〉n ∪ 〈r〉n ∪ 〈pq〉n ∪ 〈pr〉n ∪ 〈qr〉n ∪ 〈pqr〉n, this completes the proof.
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Lemma 2.20. If a, b, c ∈ Z are pairwise coprime then aZn ∪ bZn ∪ cZn is an extendable
domain.

Proof. Let A = aZn ∪ bZn ∪ cZn and let h : A → R/Z be additive. Then it is easy to show
that for α = h(a)/a, β = h(b)/b, γ = h(c)/c we have

h(ma) = αma, h(mb) = βmb, h(mc) = γmc (mod 1) (m ∈ Z). (10)

It is enough to find u, v, w ∈ Z such that

α +
u

a
= β +

v

b
= γ +

w

c
(11)

since then h(x) = Lx (mod 1) would follow for L = α + u
a

= β + v
b

= γ + w
c

from (10).
For v ∈ Z there exist u and w such that (11) holds if

va = αab− βab (mod b) and vc = γbc− βbc (mod b),

which hold for some v ∈ Z if and only if

αab− βab ∈ Z, γbc− βbc ∈ Z and c(αab− βab) = a(γbc− βbc) (mod b). (12)

Using (10) for m = a, b, c we get that

αab = βab, βbc = γbc and αac = βac (mod 1),

which implies (12) and so completes the proof.

Proof. (Proposition 2.4) By Corollary 2.12 we are done if n is a power of an odd prime or if
1 ∈ supp χ̂E. So we can suppose that 1 6∈ supp χ̂E and n = pqr, where p and q are different
primes and r is a prime or r = 1. If r = 1 or r = p or r = q then n equals pq or p2q or pq2

and so 1 6∈ supp χ̂E implies that supp χ̂E ⊂ pZn ∪ qZn, hence we are done by Lemma 2.17.
Therefore we can suppose that 1 6∈ supp χ̂E and n = pqr, where p, q and r are distinct

primes. Then we have supp χ̂E ⊂ pZn ∪ qZn ∪ rZn.
If p, q, r ∈ supp χ̂E then, by Lemma 2.19, we have supp χ̂E = pZn ∪ qZn ∪ rZn, which is

an extendable domain by Lemma 2.20.
Otherwise, we can suppose by symmetry that r 6∈ supp χ̂E and so supp χ̂E ⊂ pZn ∪ qZn.

Then we are done by Lemma 2.17
This completes the proof of Proposition 2.4 and so also the proof of Theorem 2.1.

If n is even then we get positive results for small n:

Proposition 2.21. For n = 2, 4, 6, 8 and 10 every subset of Zn is uniquely determined up
to translations by its 3-deck.

For n = 2, 4 and 6 this statement follows very easily from the definition of 3-deck. For
both n = 8 and n = 10 one can provide proofs using the lemmas and the method of this
section. However, in these cases there are only 28 and 210 subsets of Zn, so one can easily
check (and we indeed did check) the statement by computer. Hence we omit the quite
complicated detailed proof, in which many cases have to be distinguished and no new idea
is needed.
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2.2 Negative results

Theorem 2.22. Let n = 2k with k ≥ 6 integer. Then there exists E, F ⊂ Zn such that they
are not translates of each other, however they have the same 3-deck.

Proof. Let

E = {0} ∪ {3, 4, . . . , k− 1} ∪ {k + 1, k + 2}, and F = {0, 1} ∪ {3, 4, . . . , k− 1} ∪ {k + 2}.

Since k ≥ 6, both E and F contain a unique block of k − 3 consecutive numbers. Thus if a
translation takes E to F then this block of E must be taken to the block of F . Since these
blocks are identical, the translation must be the identity. But E 6= F , so we proved that
they are not the translates of each other.

By (2), for checking that E and F have the same 3-deck we have to show that for the
Fourier Transforms of their characteristic function we have

s1 + s2 + s3 = 0 (mod 2k) =⇒ χ̂E(s1)χ̂E(s2)χ̂E(s3) = χ̂F (s1)χ̂F (s2)χ̂F (s3). (13)

Letting z = ζ−s
2k = e−2πi s

2k we have

χ̂E(s) = ζ−0s
2k +

(
ζ−3s
2k + ζ−4s

2k + . . . + ζ
−(k−1)s
2k

)
+ ζ

−(k+1)s
2k + ζ

−(k+2)s
2k (14)

= 1 + (z3 + z4 + . . . + zk−1) + zk+1 + zk+2 = (1− z + z3)(1 + z + . . . + zk−1),

and similarly

χ̂F (s) = 1 + z + (z3 + z4 + . . . + zk−1) + zk+2 = (1− z2 + z3)(1 + z + . . . + zk−1). (15)

If s is even but s 6= 0 (mod 2k) then

1 + z + . . . + zk−1 =
zk − 1

z − 1
=

e−2πi ks
2k − 1

e−2πi s
2k − 1

= 0,

and so χ̂E(s) = χ̂F (s) = 0.
Since s1 + s2 + s3 = 0 (mod 2k) implies that at least one of s1, s2 and s3 is even, we get

that (13) clearly holds unless at least one of s1, s2 and s3 is zero.
So suppose that at least one of s1, s2 and s3 is zero. Then, in order to check (13), we have

to show that
χ̂E(s)χ̂E(−s) = χ̂F (s)χ̂F (−s) (s ∈ Z2k). (16)

This is just a restatement of the fact that E and F have the same 2-deck, which is clearly
true as E is a translate of −F .

Theorem 2.23. Let n = pqrd with p, q two distinct primes and r, d > 1 integers. Then
there exist E, F ⊂ Zn such that they are not translates of each other, however they have the
same 3-deck.

Proof. Let

A =

{
l1n

q
+ kd : k ∈ {0, 1, . . . , r − 1}, l1 ∈ {0, 1, . . . , q − 1}

}
,

B =

{
l2n

p
+ kd : k ∈ {0, 1, . . . , r − 1}, l2 ∈ {0, 1, . . . , p− 1}

}
,
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E = A ∪ (B + 1) and F = A ∪ (B + d + 1).

Then

χ̂E(s) =

(
r−1∑
k=0

e−2πi kds
n

)
︸ ︷︷ ︸
0 if pq|s but pqr-s

·


q−1∑
l1=0

e−2πi
l1s
q

︸ ︷︷ ︸
q if q|s, 0 if q-s

+e−2πi s
n ·

p−1∑
l2=0

e−2πi
l2s
p

︸ ︷︷ ︸
p if p|s, 0 if p-s


and

χ̂F (s) =

(
r−1∑
k=0

e−2πi kds
n

)
·

(
q−1∑
l1=0

e−2πi
l1s
q + e−2πi

s(d+1)
n ·

p−1∑
l2=0

e−2πi
l2s
p

)
.

Thus
χ̂E(s) 6= 0 ⇐⇒ χ̂F (s) 6= 0 ⇐⇒ (p|s or q|s) and (pq6 |s or pqr|s),

hence
supp χ̂E = {s ∈ Zn : p|s, q6 |s}︸ ︷︷ ︸

Sp

∪{s ∈ Zn : q|s, p6 |s}︸ ︷︷ ︸
Sq

∪{s ∈ Zn : pqr|s}︸ ︷︷ ︸
Spqr

.

For checking that E and F have the same 3-deck we have to show that

s1 + s2 + s3 = 0(mod n) =⇒ χ̂E(s1)χ̂E(s2)χ̂E(s3) = χ̂F (s1)χ̂F (s2)χ̂F (s3). (17)

We have nothing to prove unless s1, s2, s3 ∈ supp χ̂E. So suppose that s1, s2, s3 ∈ supp χ̂E.
Note that χ̂E(s) = χ̂F (s) unless s ∈ Sp. Thus if none of s1, s2, s3 are in Sp then we are

done.
It is impossible that exactly one of them is in Sp (because of divisibility by q).
If two of them, say s1 and s2, are in Sp then s3 is in Sp or in Spqr. In both cases it is easy

to check (17).
Finally, suppose that F = E + t (mod n). Since both E and F have qr elements that

are 0 mod d and pr elements that are 1 mod d, t must be of the form t = md. Thus we
must have A = A + md and B + d = B + md (mod n). But B consists of blocks which are
arithmetic progressions of length r and step d, and these are regularly spaced at intervals
of length qrd. Hence B + d = B + md (mod n) can only happen if d −md is a multiple of
qrd, or, equivalently, if m = 1 mod qr. On the other hand, by the similar structure of A it
follows that m = 0 mod pr, which is a contradiction.

2.3 Results about real-valued functions

Given the results we have proved so far we can also characterize those values of n for which the
3-deck determines the characteristic function of any nonempty subset of Zn up to translation
even among all Zn → R functions.

Theorem 2.24. For n ≥ 3 the following three statements are equivalent.

(i) n is a power of an odd prime or n is the product of at most 3 (not necessarily distinct)
odd primes.

(ii) The support of the Fourier Transform of any characteristic function on Zn is an ex-
tendable domain.
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(iii) If for some ∅ 6= E ⊂ Zn and g : Zn → R, χE and g have the same 3-deck then they are
translates of each other.

Proof. (i)⇒(ii): This is exactly Proposition 2.4.
(ii)⇒(iii): If E 6= ∅ then χ̂E(0) 6= 0 and so by Lemma 2.3 (2) we get that χE and g are

indeed translates of each other.
(iii)⇒(i): If n is odd and (i) does not hold then, by Theorem 2.23, there exists counterex-

amples for (iii), even with g being a characteristic function.
Now suppose that n > 2 is even and let E = {1, 2, . . . , n/2}. It is easy to check that

supp χ̂E = {0, 1, 3, 5, . . . , n− 1}. Let

hα(l) =


α if l = 1,

−α if l = −1,

0 otherwise.

Let gα be the inverse Fourier Transform of the function Gα(l) = e2πihα(l) · χ̂E(l) on Zn. Since

hα is an odd function, Gα(−l) = Gα(l), and so gα is a real valued function. Since hα is
additive on supp χ̂E, the right hand side of (3) holds for k = 3, f and g = gα, and so
NχE ,3 = Ngα,3. This way we get continuum many distinct gα : Zn → R functions. Since χE

has only finitely many translates (iii) cannot hold for every gα.

Example 2.25. Let n ≥ 4 be arbitrary, f = 0 on Zn and g(k) = cos 2kπ
n

(k ∈ Zn). Then

clearly f̂ = 0 and one can check that

ĝ(l) =


n/2 if l = 1,

−n/2 if l = −1,

0 otherwise.

Then it is easy to check that the righthand-side of (3) holds for k = 3, so Nf,3 = Ng,3,
however f and g are clearly not translates of each other.

This shows that if we allow E = ∅ in (iii) of Theorem 2.24 then (i)⇒(iii) is not true any
more.

Remark 2.26. It is proved in [JK] (Proposition 2.7) that if f is the characteristic function of
a subset of R of finite measure and g ∈ L1(R) is a nonnegative function such that Nf,3 = Ng,3

then there g must be equal to a characteristic function almost everywhere.
One can check that the same proof works on Zn as well. This has the following conse-

quences.

1. The characteristic functions on Zn are determined up to translation by their 3-deck
among nonnegative functions if and only if they are determined up to translation among
characteristic functions; that is, by Corollary 1.1, if and only if n is a power of an odd
prime or n is the product of at most three (not necessarily distinct) odd primes or
n ∈ {2, 4, 6, 8, 10}.

2. Only the (at most finitely many) characteristic functions can be nonnegative among the
(continuum many) gα functions of the proof of (iii)⇒(i) of Theorem 2.24.
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3 The percentage of subsets of Zn not determined by their 3-deck
up to translation

As we mentioned in the Introduction, in [RS1] Radcliffe and Scott proved that almost all
subsets of Zn are determined up to translation by their 3-deck. More specifically they proved
that the fraction of subsets of Zn whose Fourier Transform vanishes somewhere is at most
Cε

/
n1/2−ε, for any ε > 0, and, since any set whose FT does not vanish is uniquely determined

from its 3-deck, this proves that a fraction at most Cε

/
n1/2−ε of the possible sets are not

determined by their 3-deck.
Furthermore, it is easy to see that the probability of having the FT of a random subset

of Zn vanish somewhere is at least C
/√

n. For this one takes n to be even and examines
the FT of the random set at n/2. The vanishing there is equivalent to a random subset of
a set of n/2 ones and n/2 minus-ones having a vanishing sum. This probability is equal to(

n
n/2

)/
2n ∼ C

/√
n.

However, here we show that the probability that a random subset of Zn is not uniquely de-
termined up to translation by its 3-deck is exponentially small (Theorem 3.4). When talking
about random sets in this section we mean that all subsets of Zn are equally probable. This
is the same as tossing an independent fair coin for each element of Zn to decide membership
in the random set.

Lemma 3.1. Suppose u1, . . . , um are vectors in a vector space V and that the collection
u1, . . . , uD, D ≤ m, are linearly independent. Suppose also that εj, j = 1, . . . ,m, are {0, 1}-
valued random variables which are unbiased and independent. Then

Pr

[
m∑

j=1

εjuj = 0

]
≤ 2−D. (18)

Proof. Since u1, . . . , uD are independent, for any fixed εD+1, . . . , εm, the 2D possible values
of
∑m

j=1 εjuj are all distinct, so only at most one of them can be zero.

Corollary 3.2. If E ⊆ Zn is random then

Pr [χ̂E(k) = 0] ≤ 2−Cn
/

(k,n) log log n,

for some absolute constant C > 0 and for all k ∈ Zn.

Proof. Let ω = e2πi/n. Then

χ̂E(k) =
n−1∑
j=0

εjω
kj, (19)

where the εj, j = 0, . . . , n− 1, are independent, unbiased, {0, 1}-valued random variables.
It is well known that the algebraic order of ωk over the field Q is φ(n/(k, n)), where φ(n)

is the Euler function which counts how many numbers from 1 to n are coprime to n. It is
also well known [HW] that φ(n) ≥ Cn

/
log log n. This means that if P (x) is a polynomial

with rational coefficients and degree < Cn
/
(k, n) log log n then P (ωk) 6= 0. This, in turn,

implies that the complex numbers

1, ωk, ω2k, . . . , ω(Cn/(k,n) log log n)·k
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are Q-linearly independent. Applying Lemma 3.1 to the random sum (19) in the vector
space C over Q we get our result.

Corollary 3.3. If n is odd then the probability that a random subset of Zn is not uniquely
determined by its 3-deck is at most 2−Cn/ log log n.

Proof. We make use of a result of Grünbaum and Moore [GM] (see §1.1) which states that
if n is odd, E ⊆ Zn, and χ̂E(1) 6= 0 then E is determined by its 3-deck. The rest follow from
Corollary 3.2 with k = 1.

For arbitrary n we lose a little in the exponent. Probably this is unnecessary.

Theorem 3.4. If E is a random subset of Zn the probability that E is not determined by its
3-deck is at most

2−Cεn1−ε

,

for any ε > 0.

For the proof we use some notions (recall Definition 2.2 and Notation 2.5) and lemmas
from §2.1 and also some new ones. Write

Ax = {k ∈ Zn : (k, n) ≤ x},

and write GAP(B) for the size of the largest interval contained in the complement of B ⊆ Zn.

Lemma 3.5. GAP(Ad(n)) ≤ d(n), where d(n) denotes the number of divisors of n.

Proof. Suppose that I = {a, a + 1, . . . , a + d(n)} ⊆ Ac
d(n) is an interval of size d(n)+1, and

i, j ∈ I, i 6= j. Then (i, n) > d(n) and (j, n) > d(n). It follows that (i, n) 6= (j, n), otherwise
we would have |i− j| ≥ (i, n) > d(n), which cannot happen as all distances in I are at most
d(n). Thus, to each i ∈ I there corresponds a different divisor of n, namely (i, n). But this
cannot happen as I has d(n) + 1 members but there are only d(n) different divisors of n. �

Lemma 3.6. If {0, 1, . . . , d} ⊂ A ⊂ Zn and GAP(A) ≤ d then A is an extendable domain.

Proof. Let h : A → R/Z be an additive function. We prove that h satisfies h(j) =
jh(1) (mod 1), for all j ∈ A, which means, by definition, that A is indeed an extendable
domain.

If 1 ≤ j ≤ d then h(j) = h(j − 1) + h(1) (mod 1), since 1, j − 1, j all belong to A, hence
by induction we have our claim for j up to d. Suppose d < J ∈ A and that we have proved
h(j) = jh(1) (mod 1) for all j ∈ A, j < J . Since GAP(A) ≤ d, it follows that there is a
j′ ∈ A ∩ {J − d, . . . , J − 1}. By our inductive assumption we have h(j′) = j′h(1) (mod 1)
and we also know h(J − j′) = (J − j′)h(1) (mod 1), as J − j′ ≤ d. The additivity of h on A
implies h(J) = Jh(1) (mod 1).

Lemma 3.7. If E ⊂ Zn and {1, 2, . . . , d(n)} ⊂ supp χ̂E then E is determined up to trans-
lation by its 3-deck.

Proof. By Fact 2.6, {1, 2, . . . , d(n)} ⊂ supp χ̂E implies that Ad(n) ⊂ supp χ̂E. Thus by
Lemma 3.5, GAP(supp χ̂E) ≤ d(n). Hence by Lemma 3.6, supp χ̂E is an extendable domain.
Therefore by Lemma 2.3 (1), E is determined up to translation by its 3-deck.
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Proof. (Theorem 3.4) By Corollary 3.2,

Pr [∃j ∈ {1, 2, . . . , d(n)} : χ̂E(j) = 0] ≤ d(n)2−Cn/d(n) log log n

≤ Cεn
ε2−Cεn1−ε

≤ 2−Cε′n
1−ε′

,

where ε′ > 0 is again arbitrary, and we used the fact that d(n) = O(nε) for all ε > 0 [HW].
By Lemma 3.7, this completes the proof of Theorem 3.4.
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