A remark on Bourgain's distributional inequality on the Fourier spectrum of Boolean functions

Hamed Hatami Department of Computer Science University of Toronto E-mail: hamed@cs.toronto.edu

Submitted: September 24, 2005; Accepted: May 2, 2006; Published: May 5, 2006

Abstract

Bourgain's theorem says that under certain conditions a function $f : \{0, 1\}_2^n \to \{0, 1\}$ can be approximated by a function g which depends only on a small number of variables. By following his proof we obtain a generalization for the case that there is a nonuniform product measure on the domain of f.

1 Introduction

Fix $0 < \alpha < 1$. Consider the measure space $(\mathbb{F}_2^n, \mu_\alpha)$ where μ_α is the product measure defined as $\mu_\alpha(x) = \alpha^{|x|}(1-\alpha)^{n-|x|}$ with $|x| = \sum_{i=1}^n x_i$. Let $f : (\mathbb{F}_2^n, \mu_\alpha) \to \{0, 1\}$ be a Boolean function. We want to show that under certain conditions f can be approximated by a function g which depends only on a small number of variables. More formally, there exist indices $1 \leq i_1 < \ldots < i_m \leq n$ such g(x) = g(y), if $x_{i_j} = y_{i_j}$ for every $1 \leq j \leq m$. Moreover by g approximates f we mean that

$$\|f - g\|_2^2 \le \epsilon. \tag{1}$$

Here m and ϵ are parameters which depend on each other and the conditions on f. We are interested in the conditions that come from the Fourier-Walsh spectrum of f. The results of this type have many applications in combinatorics and computer science [1, 7, 3, 4, 8, 6]. Let

$$h = \sum_{|S| \ge k} |\hat{f}(S)|^2,$$
(2)

denote the second norm squared of the Fourier transform of f on large frequencies, i.e., $|S| \ge k$. It is usually the case that when h is small, f can be approximated by a function g which depends only on a few number of variables. The result of this type for k = 2, $\alpha = 1/2$ has been proven in [4], and for k = 2 in the more general setting of the uniform measure on \mathbb{F}_r^n in [1] and [5]. So far, the most general known result is Bourgain's distributional inequality [2] which deals with $\alpha = 1/2$ and the general k (See Khot and Naor [6] for a quantitative version).

In all the mentioned results the measure is assumed to be uniform. In [7] Kindler and Safra tried to generalize these results to arbitrary values of α , and proved a theorem which deals with the general values of k and α . That result requires h to be very small, and for $\alpha = 1/2$ is not as strong as Bourgain's theorem. In the present note we show that by following Bourgain's proof one can obtain a theorem (Corollary 2.2) for general values of α which does not require h to be as small as in [7]. However we should mention that this theorem does not completely cover their result, and for sufficiently small h, their approximation is stronger.

One notion that has been used in both [2] and [7] is the hypercontractivity of the Bonami-Beckner operator. Remember that the Bonami-Beckner operator can be defined as $T_{\delta}f = \sum \delta^{|S|} \hat{f}(S) w_s$ where w_S are the bases of the Fourier-Walsh expansion. For $1 \leq p \leq q < \infty$ and $0 < \eta < 1$, we say that a function $f : (\mathbb{F}_2^n, \mu_\alpha) \to \mathbb{F}$ is (p, q, η) -hypercontractive, if

 $||T_\eta f||_q \le ||f||_p.$

The classic Bonami-Beckner Theorem says that for $\alpha = 1/2$, f is $(2, q, \frac{1}{\sqrt{q-1}})$ -hypercontractive. Recently P. Wolff proved the following theorem (see also [9] and [10]).

Theorem 1.1. [11] Let $f: (\mathbb{F}_2^n, \mu_\alpha) \to \mathbb{R}, q \geq 2, 1/q + 1/q' = 1, and A = \frac{1-\alpha}{\alpha}$. Define

$$\eta_{q'}(\alpha) = \eta_q(\alpha) = \left(\frac{A^{1/q'} - A^{-1/q'}}{A^{1/q} - A^{-1/q}}\right)^{-1/2}$$

Then

- 1. f is $(2, q, \eta_a(\alpha))$ -hypercontractive.
- 2. f is $(q', 2, \eta_{q'}(\alpha))$ -hypercontractive.

Remark. Since T_{δ} is self-adjoint, by duality of L_p spaces, (1) and (2) are equivalent. Note that in Theorem 1.1, $\eta_q(1/2)$ and $\eta_{q'}(1/2)$ are not defined. However having Bonami-Beckner Theorem in mind, we define $\eta_q(1/2) = \eta_{q'}(1/2) = \frac{1}{\sqrt{q-1}}$.

For simplicity we will write η_p for $\eta_p(\alpha)$. Next we want to state Kindler and Safra's theorem. Let

$$I_{\kappa} = \left\{ i \in \{1, \dots, n\} : \sum_{i \in S, |S| \le k} \widehat{f}(S)^2 \ge \kappa \right\}.$$
(3)

The goal is to show that for small values of h and κ , f essentially depends only on the variables with indices in I_{κ} . First note that

$$\kappa |I_{\kappa}| \le \sum_{i=1}^{n} \sum_{S:i \in S, |S| \le k} \widehat{f}(S)^2 \le k$$

which follows

$$|I_{\kappa}| \le k/\kappa. \tag{4}$$

Let $g = \sum_{S \subseteq I_{\kappa}} \widehat{f}(S) w_S$. Note that g depends only on the variables with indices in I_{κ} . Moreover

$$\|f - g\|_2^2 = \sum_{S \not\subseteq I_\kappa} \widehat{f}(S)^2.$$
(5)

So we have to bound the right hand side of (5).

Theorem 1.2. (Kindler and Safra [7]) There exists a global constant C such that for $h, \kappa \leq \eta_4^{16k}/C$, we have

$$\sum_{S \notin I_{\kappa}} \widehat{f}(S)^2 \le h(1 + 1266\eta_4^{-4k}h^{1/4}).$$

the next lemma estimates $\eta_p(\alpha)$. In the following we write $x \leq y$ to indicate that there is a universal constant c > 0 such that $x \leq cy$.

Lemma 1.3. For $\alpha \leq 1/2$, and $1 \leq p = 1 + x \leq 2$, we have

• If $\alpha \leq e^{-1/x}$, then

$$\eta_p(\alpha) \gtrsim \alpha^{\frac{2-p}{2p}}.$$

• If $\alpha > e^{-1/x}$, then

$$\eta_p(\alpha) \gtrsim \alpha^{\frac{2-p}{2p}} \sqrt{\ln(1/\alpha)x}$$

Proof. Notice that

$$\eta_p(\alpha) = A^{\frac{p-2}{2p}} \left(\frac{1 - A^{-2/p}}{1 - A^{-2/p'}}\right)^{-1/2} \geq \alpha^{\frac{2-p}{2p}} \left(\frac{1 - e^{-2\ln(A)/p}}{1 - e^{-2\ln(A)/p'}}\right)^{-1/2} \\ \geq \alpha^{\frac{2-p}{2p}} \sqrt{1 - e^{-2\ln(A)/p'}}.$$
(6)

First assume that $\alpha \leq e^{-1/x}$. Then since p' = 1 + 1/x, we have

$$\ln(A)/p' \ge \frac{\ln(1/(2\alpha))}{p'} \ge \frac{1/x - \ln(2)}{1/x + 1} \ge 1/10.$$

 So

$$(6) \gtrsim \alpha^{\frac{2-p}{2p}}.$$

Next consider $\alpha > e^{-1/x}$. We can assume that $-2\ln(A)/p' > -1$ as otherwise the theorem becomes clear. Using the fact that for 0 < y < 1, $e^{-y} \leq 1 - y/2$, we get

(6)
$$\gtrsim \alpha^{\frac{2-p}{2p}} \sqrt{\ln(A)/p'} \gtrsim \alpha^{\frac{2-p}{2p}} \sqrt{\ln(1/\alpha)x}.$$

2 Main Result

In this section we state our main result.

Theorem 2.1. Let $0 < \alpha \leq 1/2$, and $f : (\mathbb{F}_2^n, \mu_\alpha) \to \{0, 1\}$ be a Boolean function. For $2 < k \leq n$ and $0 < \kappa < 1$, h and I_{κ} are defined as in (2) and (3), respectively. If

$$\phi = \frac{\log_2(1/\alpha) + \sqrt{\log_2(1/h)\log_2\log_2 k}}{16\log_2(1/h)},$$

then

$$\gamma = \sum_{|S| < k, S \not\subseteq I_{\kappa}} \widehat{f}(S)^2 \lesssim \sqrt{k} 2^{\frac{\log_2 \log_2 k}{\phi}} \left(h/\alpha + \alpha^{-\frac{k+1}{2}} \kappa^{1/4} \right) + (\log_2 k) \sqrt{h}.$$
(7)

Online Journal of Analytic Combinatorics, Issue 1 (2006), #3

Proof. To prove the theorem in the special case of $\alpha = 1/2$, [2] used the following facts:

$$\|f\|_{p} \ge \left(\sum_{A \subseteq \{1,\dots,n\}} \eta_{p}(\alpha)^{2|A|} \widehat{f}(A)^{2}\right)^{1/2} \ge \eta_{p}(\alpha) \left(\sum_{i=1}^{n} \widehat{f}(\{i\})^{2}\right)^{1/2},\tag{8}$$

and if a function f satisfies f(S) = 0, for every $|S| \ge k$, then

$$||f||_4 = ||T_{\eta_4}T_{\eta_4^{-1}}f||_4 \le ||T_{\eta_4^{-1}}f||_2 \le \eta_4^{-k}||f||_2,$$

or

$$\|f\|_4^4 \le \eta_4^{-4k} \|f\|_2^4. \tag{9}$$

By substituting (8) and (9) for general value of α in the proof, we obtain the following inequality instead of Equation (20) in [2]:

$$\delta^{p/2} \rho_{t_0} \lesssim \frac{\eta_p^{-p} \delta}{2^{t_0}} \left(\sum_{t < \log_2 k} 2^t \rho_t \right) + \eta_p^{-p} h + (\delta h)^{p/2} + (\eta_4^{-2k} \sqrt{\kappa})^{p/2}, \tag{10}$$

for every $1 \le t_0 < \log_2 k$, $0 < \delta < 1$, and $1 \le p \le 2$, where

$$\rho_t = \sum_{2^{t-1} \le |S \setminus I_\kappa| < 2^t} \widehat{f}(S)^2.$$
(11)

We distinguish two cases:

Case 1:

$$\sum_{<\log_2 k} 2^t \rho_t \ge \gamma \sqrt{k}$$

where γ is defined in (7). Choose t_0 to satisfy

$$2^{t_0} \rho_{t_0} \ge \frac{\sum_{t < \log_2 k} 2^t \rho_t}{\log_2 k}$$

It follows that $\rho_{t_0} \geq \frac{\gamma}{\sqrt{k}\log_2 k}$. Assume $p \in (3/2, 2)$ so that we can use Lemma 1.3 and obtain $\eta_p \gtrsim \alpha^{\frac{2-p}{2p}}$. Substituting these in (10) we get

$$\left(\delta^{p/2} - \alpha^{\frac{p-2}{2}}\delta \log_2 k\right) \frac{\gamma}{\sqrt{k}\log_2 k} \lesssim \alpha^{\frac{p-2}{2}}h + (\delta h)^{p/2} + (\eta_4^{-2k}\sqrt{\kappa})^{p/2}.$$
 (12)

Now taking $\delta = \frac{\alpha(\log_2 k)^{\frac{2}{p-2}}}{4}$ we obtain

$$\delta^{p/2} \frac{\gamma}{\sqrt{k} \log_2 k} \lesssim \alpha^{\frac{p-2}{2}} h + (\delta h)^{p/2} + (\eta_4^{-2k} \sqrt{\kappa})^{p/2}.$$
 (13)

We can assume that

$$\sqrt{kh/\alpha} < 1, \tag{14}$$

as otherwise (7) becomes clear. Let $p = 2 - 4\phi$. Note that (14) implies p > 3/2, and by a straightforward calculation that the first term on the right hand side of (13) is greater than the second term. So

$$\gamma \lesssim 2^{\frac{\log_2 \log_2 k}{2\phi}} \left(\sqrt{k}h/\alpha + \sqrt{k} (\eta_4^{-2k} \sqrt{\kappa}/\alpha)^{1-2\phi} \right).$$
(15)

Online Journal of Analytic Combinatorics, Issue 1 (2006), #3

Case 2:

$$\sum_{t < \log_2 k} 2^t \rho_t \le \gamma \sqrt{k}.$$

In this case we choose t_0 such that $\rho_{t_0} \geq \frac{\gamma}{\log_2 k}$. Substituting these in (10) we get

$$\left(\frac{\delta^{p/2}}{\log_2 k} - \eta_p^{-p}\delta\sqrt{k}\right)\gamma \lesssim \eta_p^{-p}h + (\delta h)^{p/2} + (\eta_4^{-2k}\sqrt{\kappa})^{p/2}.$$
(16)

Taking $\delta \approx \frac{\alpha}{k(\log_2 k)^4}$ and $p = 1 + \frac{1}{6\log_2 k}$ we get

$$\eta_p \ge \alpha^{\frac{2-p}{2p}} (\log_2 k)^{-1/2},$$

and so

$$\gamma \lesssim \frac{1}{\alpha} \sqrt{k} (\log_2 k)^4 h + (\log_2 k) \sqrt{h} + \left(\frac{\eta_4^{-2k} \sqrt{\kappa} k (\log_2 k)^6}{\alpha}\right)^{1/2}.$$
 (17)

From (15) and (17) we obtain

$$\gamma \lesssim 2^{\frac{\log_2 \log_2 k}{\phi}} \left(\sqrt{k}h/\alpha + (\eta_4^{-2k}\sqrt{\kappa}k/\alpha)^{1/2} \right) + (\log_2 k)\sqrt{h}.$$

Corollary 2.2. Let $f : (\mathbb{F}_2^n, \mu_\alpha) \to \{0, 1\}$ be a Boolean function. Let $2 < k \leq n$, and h and I_{κ} be defined as in (2) and (3) respectively. If $0 < \kappa < h^4 \alpha^{2k-2}$ and

$$\phi = \frac{\log_2(1/\alpha) + \sqrt{\log_2(1/h)\log_2\log_2 k}}{16\log_2(1/h)},$$

then

$$\sum_{S \notin I_{\kappa}} \widehat{f}(S)^2 \lesssim \sqrt{k} 2^{\frac{\log_2 \log_2 k}{\phi}} h/\alpha + (\log_2 k)\sqrt{h}.$$

Proof. Note that $\sum_{S \notin I_{\kappa}} \widehat{f}(S)^2 \leq \gamma + h$, where γ is defined in Theorem 2.1. Moreover we can assume that $\frac{\sqrt{h}}{2} \geq h$ as otherwise the corollary becomes obvious. Now the assumption $\kappa < h^4 \alpha^{2k-2}$ completes the proof.

Acknowledgment

The author is grateful to Mahya Ghandehari for reading the draft version of this note, and her valuable comments.

References

- [1] N. ALON, I. DINUR, E. FRIEDGUT, AND B. SUDAKOV, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal., 14 (2004), pp. 913–940.
- J. BOURGAIN, On the distributions of the Fourier spectrum of Boolean functions, Israel J. Math., 131 (2002), pp. 269–276.

- [3] E. FRIEDGUT, Boolean functions with low average sensitivity depend on few coordinates, Combinatorica, 18 (1998), pp. 27–35.
- [4] E. FRIEDGUT, G. KALAI, AND A. NAOR, Boolean functions whose Fourier transform is concentrated on the first two levels, Adv. in Appl. Math., 29 (2002), pp. 427–437.
- [5] M. GHANDEHARI AND H. HATAMI, Fourier analysis and large independent sets in powers of complete graphs, submitted, (2005).
- [6] S. KHOT AND A. NAOR, *Nonembeddability theorems via Fourier analysis*, in 46th IEEE Symposium on Foundations of Computer Science, 2005. to appear.
- [7] G. KINDLER AND S. SAFRA, Noise-resistant boolean-functions are juntas, prerint.
- [8] N. LINIAL, Y. MANSOUR, AND N. NISAN, Constant depth circuits, Fourier transform, and learnability, J. Assoc. Comput. Mach., 40 (1993), pp. 607–620.
- [9] E. MOSSEL, R. O'DONNELL, AND K. OLESZKIEWICZ, Noise stability of functions with low influences: invariance and optimality, in 46th IEEE Symposium on Foundations of Computer Science, 2005. to appear.
- [10] K. OLESZKIEWICZ, On a nonsymmetric version of the Khinchine-Kahane inequality, in Stochastic inequalities and applications, vol. 56 of Progr. Probab., Birkhäuser, Basel, 2003, pp. 157–168.
- [11] P. WOLFF, Hypercontractivity of simple random variables, preprint, (2005).