A remark on Bourgain's distributional inequality on the Fourier spectrum of Boolean functions

Hamed Hatami
Department of Computer Science
University of Toronto
E-mail: hamed@cs.toronto.edu

Submitted: September 24, 2005; Accepted: May 2, 2006; Published: May 5, 2006

Abstract

Bourgain's theorem says that under certain conditions a function $f:\{0,1\}_{2}^{n} \rightarrow\{0,1\}$ can be approximated by a function g which depends only on a small number of variables. By following his proof we obtain a generalization for the case that there is a nonuniform product measure on the domain of f.

1 Introduction

Fix $0<\alpha<1$. Consider the measure space $\left(\mathbb{F}_{2}^{n}, \mu_{\alpha}\right)$ where μ_{α} is the product measure defined as $\mu_{\alpha}(x)=\alpha^{|x|}(1-\alpha)^{n-|x|}$ with $|x|=\sum_{i=1}^{n} x_{i}$. Let $f:\left(\mathbb{F}_{2}^{n}, \mu_{\alpha}\right) \rightarrow\{0,1\}$ be a Boolean function. We want to show that under certain conditions f can be approximated by a function g which depends only on a small number of variables. More formally, there exist indices $1 \leq i_{1}<\ldots<i_{m} \leq n$ such $g(x)=g(y)$, if $x_{i_{j}}=y_{i_{j}}$ for every $1 \leq j \leq m$. Moreover by g approximates f we mean that

$$
\begin{equation*}
\|f-g\|_{2}^{2} \leq \epsilon \tag{1}
\end{equation*}
$$

Here m and ϵ are parameters which depend on each other and the conditions on f. We are interested in the conditions that come from the Fourier-Walsh spectrum of f. The results of this type have many applications in combinatorics and computer science $[1,7,3,4,8,6]$. Let

$$
\begin{equation*}
h=\sum_{|S| \geq k}|\widehat{f}(S)|^{2}, \tag{2}
\end{equation*}
$$

denote the second norm squared of the Fourier transform of f on large frequencies, i.e., $|S| \geq k$. It is usually the case that when h is small, f can be approximated by a function g which depends only on a few number of variables. The result of this type for $k=2, \alpha=1 / 2$ has been proven in [4], and for $k=2$ in the more general setting of the uniform measure on \mathbb{F}_{r}^{n} in [1] and [5]. So far, the most general known result is Bourgain's distributional inequality [2] which deals with $\alpha=1 / 2$ and the general k (See Khot and Naor [6] for a quantitative version).

In all the mentioned results the measure is assumed to be uniform. In [7] Kindler and Safra tried to generalize these results to arbitrary values of α, and proved a theorem which deals with the general values of k and α. That result requires h to be very small, and for $\alpha=1 / 2$ is not as strong as Bourgain's theorem. In the present note we show that by following

Bourgain's proof one can obtain a theorem (Corollary 2.2) for general values of α which does not require h to be as small as in [7]. However we should mention that this theorem does not completely cover their result, and for sufficiently small h, their approximation is stronger.

One notion that has been used in both $[2]$ and $[7]$ is the hypercontractivity of the BonamiBeckner operator. Remember that the Bonami-Beckner operator can be defined as $T_{\delta} f=$ $\sum \delta^{|S|} \widehat{f}(S) w_{s}$ where w_{S} are the bases of the Fourier-Walsh expansion. For $1 \leq p \leq q<\infty$ and $0<\eta<1$, we say that a function $f:\left(\mathbb{F}_{2}^{n}, \mu_{\alpha}\right) \rightarrow \mathbb{F}$ is (p, q, η)-hypercontractive, if

$$
\left\|T_{\eta} f\right\|_{q} \leq\|f\|_{p}
$$

The classic Bonami-Beckner Theorem says that for $\alpha=1 / 2, f$ is $\left(2, q, \frac{1}{\sqrt{q-1}}\right)$-hypercontractive. Recently P. Wolff proved the following theorem (see also [9] and [10]).

Theorem 1.1. [11] Let $f:\left(\mathbb{F}_{2}^{n}, \mu_{\alpha}\right) \rightarrow \mathbb{R}, q \geq 2,1 / q+1 / q^{\prime}=1$, and $A=\frac{1-\alpha}{\alpha}$. Define

$$
\eta_{q^{\prime}}(\alpha)=\eta_{q}(\alpha)=\left(\frac{A^{1 / q^{\prime}}-A^{-1 / q^{\prime}}}{A^{1 / q}-A^{-1 / q}}\right)^{-1 / 2}
$$

Then

1. f is $\left(2, q, \eta_{q}(\alpha)\right)$-hypercontractive.
2. f is $\left(q^{\prime}, 2, \eta_{q^{\prime}}(\alpha)\right)$-hypercontractive.

Remark. Since T_{δ} is self-adjoint, by duality of L_{p} spaces, (1) and (2) are equivalent. Note that in Theorem 1.1, $\eta_{q}(1 / 2)$ and $\eta_{q^{\prime}}(1 / 2)$ are not defined. However having Bonami-Beckner Theorem in mind, we define $\eta_{q}(1 / 2)=\eta_{q^{\prime}}(1 / 2)=\frac{1}{\sqrt{q-1}}$.

For simplicity we will write η_{p} for $\eta_{p}(\alpha)$. Next we want to state Kindler and Safra's theorem. Let

$$
\begin{equation*}
I_{\kappa}=\left\{i \in\{1, \ldots, n\}: \sum_{i \in S,|S| \leq k} \widehat{f}(S)^{2} \geq \kappa\right\} \tag{3}
\end{equation*}
$$

The goal is to show that for small values of h and κ, f essentially depends only on the variables with indices in I_{κ}. First note that

$$
\kappa\left|I_{\kappa}\right| \leq \sum_{i=1}^{n} \sum_{S: i \in S,|S| \leq k} \widehat{f}(S)^{2} \leq k
$$

which follows

$$
\begin{equation*}
\left|I_{\kappa}\right| \leq k / \kappa . \tag{4}
\end{equation*}
$$

Let $g=\sum_{S \subseteq I_{\kappa}} \widehat{f}(S) w_{S}$. Note that g depends only on the variables with indices in I_{κ}. Moreover

$$
\begin{equation*}
\|f-g\|_{2}^{2}=\sum_{S \nsubseteq I_{\kappa}} \widehat{f}(S)^{2} \tag{5}
\end{equation*}
$$

So we have to bound the right hand side of (5).

Theorem 1.2. (Kindler and Safra [7]) There exists a global constant C such that for $h, \kappa \leq$ $\eta_{4}^{16 k} / C$, we have

$$
\sum_{S \nsubseteq I_{\kappa}} \widehat{f}(S)^{2} \leq h\left(1+1266 \eta_{4}^{-4 k} h^{1 / 4}\right) .
$$

the next lemma estimates $\eta_{p}(\alpha)$. In the following we write $x \lesssim y$ to indicate that there is a universal constant $c>0$ such that $x \leq c y$.

Lemma 1.3. For $\alpha \leq 1 / 2$, and $1 \leq p=1+x \leq 2$, we have

- If $\alpha \leq e^{-1 / x}$, then

$$
\eta_{p}(\alpha) \gtrsim \alpha^{\frac{2 p}{2 p}}
$$

- If $\alpha>e^{-1 / x}$, then

$$
\eta_{p}(\alpha) \gtrsim \alpha^{\frac{2-p}{2 p}} \sqrt{\ln (1 / \alpha) x}
$$

Proof. Notice that

$$
\begin{align*}
\eta_{p}(\alpha)=A^{\frac{p-2}{2 p}}\left(\frac{1-A^{-2 / p}}{1-A^{-2 / p^{\prime}}}\right)^{-1 / 2} & \geq \alpha^{\frac{2-p}{2 p}}\left(\frac{1-e^{-2 \ln (A) / p}}{1-e^{-2 \ln (A) / p^{\prime}}}\right)^{-1 / 2} \\
& \geq \alpha^{\frac{2-p}{2 p}} \sqrt{1-e^{-2 \ln (A) / p^{\prime}}} \tag{6}
\end{align*}
$$

First assume that $\alpha \leq e^{-1 / x}$. Then since $p^{\prime}=1+1 / x$, we have

$$
\ln (A) / p^{\prime} \geq \frac{\ln (1 /(2 \alpha))}{p^{\prime}} \geq \frac{1 / x-\ln (2)}{1 / x+1} \geq 1 / 10
$$

So

$$
(6) \gtrsim \alpha^{\frac{2-p}{2 p}}
$$

Next consider $\alpha>e^{-1 / x}$. We can assume that $-2 \ln (A) / p^{\prime}>-1$ as otherwise the theorem becomes clear. Using the fact that for $0<y<1, e^{-y} \leq 1-y / 2$, we get

$$
(6) \gtrsim \alpha^{\frac{2-p}{2 p}} \sqrt{\ln (A) / p^{\prime}} \gtrsim \alpha^{\frac{2-p}{2 p}} \sqrt{\ln (1 / \alpha) x}
$$

2 Main Result

In this section we state our main result.
Theorem 2.1. Let $0<\alpha \leq 1 / 2$, and $f:\left(\mathbb{F}_{2}^{n}, \mu_{\alpha}\right) \rightarrow\{0,1\}$ be a Boolean function. For $2<k \leq n$ and $0<\kappa<1, h$ and I_{κ} are defined as in (2) and (3), respectively. If

$$
\phi=\frac{\log _{2}(1 / \alpha)+\sqrt{\log _{2}(1 / h) \log _{2} \log _{2} k}}{16 \log _{2}(1 / h)}
$$

then

$$
\begin{equation*}
\gamma=\sum_{|S|<k, S \nsubseteq I_{\kappa}} \widehat{f}(S)^{2} \lesssim \sqrt{k} 2^{\frac{\log _{2} \log _{2} k}{\phi}}\left(h / \alpha+\alpha^{-\frac{k+1}{2}} \kappa^{1 / 4}\right)+\left(\log _{2} k\right) \sqrt{h} \tag{7}
\end{equation*}
$$

Proof. To prove the theorem in the special case of $\alpha=1 / 2$, [2] used the following facts:

$$
\begin{equation*}
\|f\|_{p} \geq\left(\sum_{A \subseteq\{1, \ldots, n\}} \eta_{p}(\alpha)^{2|A|} \widehat{f}(A)^{2}\right)^{1 / 2} \geq \eta_{p}(\alpha)\left(\sum_{i=1}^{n} \widehat{f}(\{i\})^{2}\right)^{1 / 2} \tag{8}
\end{equation*}
$$

and if a function f satisfies $\widehat{f}(S)=0$, for every $|S| \geq k$, then

$$
\|f\|_{4}=\left\|T_{\eta_{4}} T_{\eta_{4}^{-1}} f\right\|_{4} \leq\left\|T_{\eta_{4}^{-1}} f\right\|_{2} \leq \eta_{4}^{-k}\|f\|_{2},
$$

or

$$
\begin{equation*}
\|f\|_{4}^{4} \leq \eta_{4}^{-4 k}\|f\|_{2}^{4} \tag{9}
\end{equation*}
$$

By substituting (8) and (9) for general value of α in the proof, we obtain the following inequality instead of Equation (20) in [2]:

$$
\begin{equation*}
\delta^{p / 2} \rho_{t_{0}} \lesssim \frac{\eta_{p}^{-p} \delta}{2^{t_{0}}}\left(\sum_{t<\log _{2} k} 2^{t} \rho_{t}\right)+\eta_{p}^{-p} h+(\delta h)^{p / 2}+\left(\eta_{4}^{-2 k} \sqrt{\kappa}\right)^{p / 2} \tag{10}
\end{equation*}
$$

for every $1 \leq t_{0}<\log _{2} k, 0<\delta<1$, and $1 \leq p \leq 2$, where

$$
\begin{equation*}
\rho_{t}=\sum_{2^{t-1} \leq\left|S \backslash I_{\kappa}\right|<2^{t}} \widehat{f}(S)^{2} . \tag{11}
\end{equation*}
$$

We distinguish two cases:

Case 1:

$$
\sum_{t<\log _{2} k} 2^{t} \rho_{t} \geq \gamma \sqrt{k}
$$

where γ is defined in (7). Choose t_{0} to satisfy

$$
2^{t_{0}} \rho_{t_{0}} \geq \frac{\sum_{t<\log _{2} k} 2^{t} \rho_{t}}{\log _{2} k}
$$

It follows that $\rho_{t_{0}} \geq \frac{\gamma}{\sqrt{k} \log _{2} k}$. Assume $p \in(3 / 2,2)$ so that we can use Lemma 1.3 and obtain $\eta_{p} \gtrsim \alpha^{\frac{2-p}{2 p}}$. Substituting these in (10) we get

$$
\begin{equation*}
\left(\delta^{p / 2}-\alpha^{\frac{p-2}{2}} \delta \log _{2} k\right) \frac{\gamma}{\sqrt{k} \log _{2} k} \lesssim \alpha^{\frac{p-2}{2}} h+(\delta h)^{p / 2}+\left(\eta_{4}^{-2 k} \sqrt{\kappa}\right)^{p / 2} \tag{12}
\end{equation*}
$$

Now taking $\delta=\frac{\alpha\left(\log _{2} k\right)^{\frac{2}{p-2}}}{4}$ we obtain

$$
\begin{equation*}
\delta^{p / 2} \frac{\gamma}{\sqrt{k} \log _{2} k} \lesssim \alpha^{\frac{p-2}{2}} h+(\delta h)^{p / 2}+\left(\eta_{4}^{-2 k} \sqrt{\kappa}\right)^{p / 2} \tag{13}
\end{equation*}
$$

We can assume that

$$
\begin{equation*}
\sqrt{k} h / \alpha<1, \tag{14}
\end{equation*}
$$

as otherwise (7) becomes clear. Let $p=2-4 \phi$. Note that (14) implies $p>3 / 2$, and by a straightforward calculation that the first term on the right hand side of (13) is greater than the second term. So

$$
\begin{equation*}
\gamma \lesssim 2^{\frac{\log _{2} \log _{2} k}{2 \phi}}\left(\sqrt{k} h / \alpha+\sqrt{k}\left(\eta_{4}^{-2 k} \sqrt{\kappa} / \alpha\right)^{1-2 \phi}\right) . \tag{15}
\end{equation*}
$$

Case 2:

$$
\sum_{t<\log _{2} k} 2^{t} \rho_{t} \leq \gamma \sqrt{k}
$$

In this case we choose t_{0} such that $\rho_{t_{0}} \geq \frac{\gamma}{\log _{2} k}$. Substituting these in (10) we get

$$
\begin{equation*}
\left(\frac{\delta^{p / 2}}{\log _{2} k}-\eta_{p}^{-p} \delta \sqrt{k}\right) \gamma \lesssim \eta_{p}^{-p} h+(\delta h)^{p / 2}+\left(\eta_{4}^{-2 k} \sqrt{\kappa}\right)^{p / 2} . \tag{16}
\end{equation*}
$$

Taking $\delta \approx \frac{\alpha}{k\left(\log _{2} k\right)^{4}}$ and $p=1+\frac{1}{6 \log _{2} k}$ we get

$$
\eta_{p} \geq \alpha^{\frac{2-p}{2 p}}\left(\log _{2} k\right)^{-1 / 2}
$$

and so

$$
\begin{equation*}
\gamma \lesssim \frac{1}{\alpha} \sqrt{k}\left(\log _{2} k\right)^{4} h+\left(\log _{2} k\right) \sqrt{h}+\left(\frac{\eta_{4}^{-2 k} \sqrt{\kappa} k\left(\log _{2} k\right)^{6}}{\alpha}\right)^{1 / 2} . \tag{17}
\end{equation*}
$$

From (15) and (17) we obtain

$$
\gamma \lesssim 2^{\frac{\log _{2} \log _{2} k}{\phi}}\left(\sqrt{k} h / \alpha+\left(\eta_{4}^{-2 k} \sqrt{\kappa} k / \alpha\right)^{1 / 2}\right)+\left(\log _{2} k\right) \sqrt{h} .
$$

Corollary 2.2. Let $f:\left(\mathbb{F}_{2}^{n}, \mu_{\alpha}\right) \rightarrow\{0,1\}$ be a Boolean function. Let $2<k \leq n$, and h and I_{κ} be defined as in (2) and (3) respectively. If $0<\kappa<h^{4} \alpha^{2 k-2}$ and

$$
\phi=\frac{\log _{2}(1 / \alpha)+\sqrt{\log _{2}(1 / h) \log _{2} \log _{2} k}}{16 \log _{2}(1 / h)}
$$

then

$$
\sum_{S \nsubseteq I_{\kappa}} \widehat{f}(S)^{2} \lesssim \sqrt{k} 2^{\frac{\log _{2} \log _{2} k}{\phi}} h / \alpha+\left(\log _{2} k\right) \sqrt{h} .
$$

Proof. Note that $\sum_{S \nsubseteq I_{k}} \widehat{f}(S)^{2} \leq \gamma+h$, where γ is defined in Theorem 2.1. Moreover we can assume that $\frac{\sqrt{h}}{2} \geq h$ as otherwise the corollary becomes obvious. Now the assumption $\kappa<h^{4} \alpha^{2 k-2}$ completes the proof.

Acknowledgment

The author is grateful to Mahya Ghandehari for reading the draft version of this note, and her valuable comments.

References

[1] N. Alon, I. Dinur, E. Friedgut, and B. Sudakov, Graph products, Fourier analysis and spectral techniques, Geom. Funct. Anal., 14 (2004), pp. 913-940.
[2] J. Bourgain, On the distributions of the Fourier spectrum of Boolean functions, Israel J. Math., 131 (2002), pp. 269-276.
[3] E. Friedgut, Boolean functions with low average sensitivity depend on few coordinates, Combinatorica, 18 (1998), pp. 27-35.
[4] E. Friedgut, G. Kalai, and A. Naor, Boolean functions whose Fourier transform is concentrated on the first two levels, Adv. in Appl. Math., 29 (2002), pp. 427-437.
[5] M. Ghandehari and H. Hatami, Fourier analysis and large independent sets in powers of complete graphs, submitted, (2005).
[6] S. Khot and A. Naor, Nonembeddability theorems via Fourier analysis, in 46th IEEE Symposium on Foundations of Computer Science, 2005. to appear.
[7] G. Kindler and S. Safra, Noise-resistant boolean-functions are juntas, prerint.
[8] N. Linial, Y. Mansour, and N. Nisan, Constant depth circuits, Fourier transform, and learnability, J. Assoc. Comput. Mach., 40 (1993), pp. 607-620.
[9] E. Mossel, R. O’Donnell, and K. Oleszkiewicz, Noise stability of functions with low influences: invariance and optimality, in 46th IEEE Symposium on Foundations of Computer Science, 2005. to appear.
[10] K. Oleszkiewicz, On a nonsymmetric version of the Khinchine-Kahane inequality, in Stochastic inequalities and applications, vol. 56 of Progr. Probab., Birkhäuser, Basel, 2003, pp. 157-168.
[11] P. Wolff, Hypercontractivity of simple random variables, preprint, (2005).

