Algebra Prelim- Fall 2012

Problems

1. Prove that a Euclidean domain is a Principal Ideal Domain.

2. (a) Let G be an abelian group with only finitely many subgroups. Prove that G is a finite group.
(b) Let P be a p-Sylow subgroup of a finite group G. Let $H \leq G$ such that the normalizer $N_G(P) \leq H$.
 i. For $g \in N_G(H)$, prove that P and gPg^{-1} are p-Sylow subgroups of H, and hence are conjugate in H.
 ii. Prove that $N_G(H) = H$.

3. Let E/F be a finite separable extension of degree n. Denote by E an algebraic closure of E. Prove that there are precisely n homomorphisms $\sigma : E \rightarrow E$ such that $\sigma|_F = id$. (Hint: one approach is to induct on n.)

4. Let $F(\alpha)$ be a Galois extension of F, and suppose there exists $\sigma \in \text{Gal}(F(\alpha)/F)$ such that $\sigma(\alpha) = \alpha^{-1}$. Prove that $[F(\alpha) : F]$ is even, and that $[F(\alpha + \alpha^{-1}) : F] = \frac{1}{2}[F(\alpha) : F]$.

5. Suppose

$$0 \rightarrow N_1 \rightarrow M \rightarrow N_2 \rightarrow 0$$

is an exact sequence of R-modules. Prove that M is Noetherian if and only if N_1 and N_2 are Noetherian.

6. Let K be a field. A discrete valuation on K is a function $\nu : K \rightarrow \mathbb{Z} \cup \{+\infty\}$ satisfying three properties:
 (a) $\nu(0) := +\infty$, and $\nu : K^\times \rightarrow \mathbb{Z}$ is surjective
 (b) $\nu(ab) = \nu(a) + \nu(b)$
 (c) $\nu(a + b) \geq \min\{\nu(a), \nu(b)\}$ for every nonzero a and b with $a + b \neq 0$.

The set $R := \{a \in K \mid \nu(a) \geq 0\} \cup \{0\}$ is called the discrete valuation ring of ν. The following will show that R is a Dedekind domain.
 (a) Prove that every non-zero ideal of R is of the form $m_k := \{x \in R \mid \nu(x) \geq k\}$.
 (b) Prove that R has only one maximal ideal $m := m_1$, and that every ideal in R is of the form m^k for some positive integer k.
 (c) Prove that m is principal, and thus all ideals are principal.
 (d) Prove that all prime ideals are maximal.
 (e) Prove that R is integrally closed in its field of fractions.