PH.D. PRELIMINARY EXAMS
DAY 1
September 4, 2001

Do as many problems as you can in whatever order you wish. Use a separate blue book for each problem. Clearly indicate the problem number and your name on the front of each book you use. There are six questions. TIME LIMIT: 3 hours

1. Find the Laurent expansion of \(\frac{1}{z^2 - 4} \) around \(z = 2 \). Where is this expansion valid?

2. Show that between any two finite dimensional normed vector spaces over \(\mathbb{R} \) of the same dimension there is a linear homeomorphism.

3. Let \((X, \chi, \mu)\) be a measure space, and denote by \(\lambda \) and \(\mathcal{L} \) respectively the Lebesgue measure and the Lebesgue measurable sets on \(\mathbb{R} \). Let \(f \) be a nonnegative integrable function on \(X \) and let

\[E = \{(x, y) \in X \times \mathbb{R} : 0 \leq y < f(x)\} . \]

Show that \(E \) is \(\chi \times \mathcal{L} \) measurable, and that \(\mu \times \lambda(E) = \int f(x) d\mu \), i.e., the integral is the “area” under the graph.

4. Prove that every continuous map \(f : D^n \to D^n \) has a fixed point, where \(D^n \) is the closed ball of radius 1 in \(\mathbb{R}^n \).
5.
(a) Suppose H is a nonnormal subgroup of a finite group G of prime index p. Show that G contains p different subgroups that are conjugate to H.

(b) Continue to let H be as above. Deduce from part (a) that H contains a strictly smaller subgroup K that is normal in G such that the index $[G : K]$ divides p!

(c) Deduce from part (b) that if H is any subgroup of index p in a finite group G where p is the smallest prime dividing the order of G, then H must be a normal subgroup of G.

6. Let $f(x) \in \mathbb{Q}[x]$ be a polynomial of degree $n > 2$, and let K be a splitting field for $f(x)$ over \mathbb{Q}. Suppose that the Galois group for $f(x)$ over \mathbb{Q} is isomorphic to S_n, the symmetric group on n letters.

(a) Show that f is irreducible over \mathbb{Q}.

(b) If α is a root of f, show that the only automorphism of $\mathbb{Q}(\alpha)$ is the identity.

(c) If $n \geq 4$, show that $\alpha^n \not\in \mathbb{Q}$.

2
7. Suppose that $a > 1$. Show that
\[\int_0^{2\pi} \frac{dx}{a + \cos x} = \frac{2\pi}{\sqrt{a^2 - 1}} \]
(HINT: Express $\cos x$ by Euler’s formula, then put $z = e^{ix}$ to transform the integral into a contour integral.)

8. Let X be the space obtained by taking the intersection of the unit sphere in \mathbb{R}^3 with the union of the three coordinate planes $x = 0, y = 0, z = 0$. Calculate the integral homology group of X.

9. Suppose that V is a Banach space and ℓ_n is a sequence of bounded linear functionals on V, such that for all $v, \ell_n(v)$ converges. Show that the limit $\ell(v)$ is a bounded linear functional. Show by example that this is not necessarily true for the space V of continuous functions of compact support on \mathbb{R}, with norm $\|f\| = \sup\{|f(x)| : x \in \mathbb{R}\}$.

10. Let X be a subset of a metric space Y.

(a) Show that X is connected if and only if for every continuous real valued function f on Y, $f(X)$ is connected.

(b) Show that X is compact if and only if for every continuous real valued function f on X, $f(X)$ is compact.
11. Let A be a commutative ring with multiplicative identity which has the property that for each $x \in A$, there exists an integer $n \geq 2$ with the property that $x^n = x$, where the integer n may vary with x.

(a) Show that every prime ideal in A is a maximal ideal.

(b) If p is a prime ideal in A, show that the ring A_p is a field, where A_p denotes the localization of A with respect to the set $S = A - p$.

12. Let K/k be a finite Galois extension with Galois group G. Let F be an immediate field between K and k.

(a) Let H be the subgroup of G consisting of all automorphisms that map F into itself. Show that H equals the normalizer of $\text{Gal}(K/F)$ in $\text{Gal}(K/k)$.

(b) Let E equal the fixed field of H. Show that F/E is a Galois extension and E is the smallest subfield of F containing k that has this property.
PH.D. PRELIMINARY EXAMS
DAY 3
September 1, 2000

Do as many problems as you can in whatever order you wish. **Use a separate blue book for each problem.** Clearly indicate the problem number and your name on the front of each book you use. There are six questions. TIME LIMIT: 3 hours

13. In the diagram below, the circles represent sequences of integrable functions on \([0, \infty)\). \(AE\) represents those that converge almost everywhere, \(M\) represents those that converge in measure, and \(L^1\) represents those that converge in the mean, i.e., in \(L^1\) norm. For each of the subsets a–f in the diagram, either give an example of a sequence in the subset, or explain why there are no such sequences. (A clearly labeled sketch is sufficient for the examples.) How do the answers change if \([0, \infty)\) is replaced by \([0, 1]\)?

14. Suppose \(f\) is an entire function satisfying \(|f(z)| \leq c|z|^M\) for some real \(M \geq 0\) and all \(z \in \mathbb{C}\). Prove that \(f\) is a polynomial.

15. Let \(H\) be a Hilbert Space, and let \(A\) be a compact self-adjoint operator on \(H\) satisfying \(\langle Av, v \rangle \geq 0\) for all \(v \in H\). For \(v \in H\), find \(\lim_{n \to \infty} w_n\), where \(w_n = A^nv/\|A^nv\|\).

16. Let \(X\) be the metric space

\[
\{(x, y) : 0 \leq x \leq 1, \text{ and if } x = 0, -1 \leq y \leq 1, \text{ otherwise, } y = \sin(1/x)\},
\]

17.
(a) State and prove the Hilbert basis theorem for polynomials over Noetherian rings.
(b) Is this theorem still true if the word Noetherian is replaced by Artinian? Prove this or give a counterexample and justify your reasoning.

18. Let $x^4 + ax^2 + b$ be an irreducible polynomial over \mathbb{Q} with roots $\pm \alpha, \pm \beta$ and splitting field K.
(a) Show that the Galois group of K over \mathbb{Q} is isomorphic to a subgroup of D_8 (the dihedral group that contains 8 elements) and hence must be isomorphic to one of the following:
 (i) $\mathbb{Z}/4\mathbb{Z}$
 (ii) $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z}$
 (iii) D_8

(b) Show that case (i) happens if and only if $\frac{\alpha}{\beta} - \frac{\beta}{\alpha} \in \mathbb{Q}$, case (ii) happens if and only if $\alpha \beta \in \mathbb{Q}$ or $\alpha^2 - \beta^2 \in \mathbb{Q}$, and case (iii) happens the rest of the time.

(Actually, the case $\alpha^2 - \beta^2$ is in \mathbb{Q} cannot occur since it corresponds to the Galois group of K/\mathbb{Q} being a subgroup of S_4 that does not permute the roots $\pm \alpha, \pm \beta$ transitively.)

(c) Find the splitting field in \mathbb{C} of the polynomial $x^4 - 4x^2 - 1$. Determine the Galois group of this splitting field over \mathbb{Q}, and match up all subgroups with all intermediate fields.