MTH 165: Linear Algebra with Differential Equations

Final Exam
May 4, 2015

NAME (please print legibly): __
Your University ID Number: ___
Indicate your instructor with a check in the box:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dummit</td>
<td>TR 16:50-18:05</td>
<td></td>
</tr>
<tr>
<td>Friedmann</td>
<td>MW 16:50-18:05</td>
<td></td>
</tr>
<tr>
<td>Petridis</td>
<td>MWF 10:25-11:15</td>
<td></td>
</tr>
<tr>
<td>Rice</td>
<td>MW 14:00-15:15</td>
<td></td>
</tr>
</tbody>
</table>

- You have 3 hours to work on this exam.
- No calculators, cell phones, other electronic devices, books, or notes are allowed during this exam.
- Show all your work and justify your answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 14 pages.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
1. **(10 points)** Find a solution (implicit solutions are acceptable) for the following initial value problems on the domain \((0, \infty)\):

 (a) \(2y + xy' = x^{-1}, \ y(1) = A\).

 (b) \(2x + yy' = x^{-1}, \ y(1) = B\).
2. (10 points) Find a basis for the nullspace of each matrix.

(a) \(A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} \).

(b) \(B = \begin{bmatrix} 1 & -1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \).

(c) \(C = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \).
3. **(10 points)** Let \(M = \begin{bmatrix} k & 0 & k \\ 0 & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \), where \(k \) is a parameter.

(a) Find \(\det(M) \).

(b) Find all value(s) of \(k \) such that \(M \) is not an invertible matrix.
We continue taking \(M = \begin{bmatrix} k & 0 & k \\ 0 & 1 & 0 \\ 1 & 0 & k \end{bmatrix} \), where \(k \) is a parameter.

(c) Find all value(s) of \(k \) such that \(\lambda = 2 \) is an eigenvalue of \(A \).
4. **(10 points)** Determine whether each given set S is a subspace of the given vector space V. If so, give a proof; if not, explain why not.

(a) $V = \mathbb{R}^3$ and $S = \{(x, y, z) \in V \mid x + y = z\}$.

(b) $V = M_2(\mathbb{R})$, the set of 2×2 matrices, and $S = \{A \in V \mid A^2 = 0\}$.
5. (10 points) Let

\[A = \begin{bmatrix} 1 & 1 & 1 & 1 \\ 0 & 2 & 2 & 2 \\ 0 & 0 & 3 & 3 \\ 0 & 0 & 0 & 4 \end{bmatrix} \]

(a) Find the eigenvalues of \(A \), and determine (with justification) whether \(A \) is a defective matrix. (In other words, determine whether \(\mathbb{R}^4 \) has a basis consisting of eigenvectors of \(A \).)

(b) Find the eigenvalues of \(A^2 \), and determine (with justification) whether \(A^2 \) is a defective matrix. (In other words, determine whether \(\mathbb{R}^4 \) has a basis consisting of eigenvectors of \(A^2 \).)
6. (10 points) Let $M_{2 \times 2}(\mathbb{R})$ be the vector space of 2×2 real matrices. Consider the linear transformation $T : M_{2 \times 2}(\mathbb{R}) \to M_{2 \times 2}(\mathbb{R})$ defined by

$$T \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a + d & b - c \\ a - c & b + d \end{bmatrix}.$$

(a) Find a basis for the kernel of T, and the dimension of the kernel.
Recall that
\[T \left(\begin{bmatrix} a & b \\ c & d \end{bmatrix} \right) = \begin{bmatrix} a + d & b - c \\ a - c & b + d \end{bmatrix}. \]

(b) Find the dimension of the range of \(T \).

(c) Is the identity matrix \(I = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \) in the range of \(T \)? Justify why or why not.
7. (10 points) Find the general solution for each differential equation:

(a) \(y'' + 4y' + 4y = 0 \).

(b) \(y^{(4)} - y = 0 \).

(c) \(y''' - 2y'' + 5y' = 0 \).
8. (10 points) Solve the equation

\[y'' + 4y = 4 \cos(2x) + 8e^{2x} \]

with initial conditions \(y(0) = 3, \ y'(0) = 4. \)
9. (10 points) Consider a spring-mass system with spring constant $k = 4 \text{ N/m}$ and a mass $m = 1 \text{ kg}$.

(a) Suppose there is no friction (or damping), and an external driving force of $6 \sin(4t) \text{ N}$ is applied to the mass (in the positive direction). If at time $t = 0$ the mass is at rest in the equilibrium position, find the position $y(t)$ of the mass at time t for $t \geq 0$.
Continue to consider the spring-mass system with spring constant \(k = 4 \text{ N/m} \), a mass \(m = 1 \text{ kg} \), and an external driving force of \(6 \sin(4t) \text{ N} \) and no friction (or damping).

(b) What is the earliest time that the mass returns to its equilibrium position? (Hint: you may need to use the identity \(\sin(2\theta) = 2\sin(\theta)\cos(\theta) \).)
10. (10 points) Solve the system of differential equations

\[x'_1 = 2x_1 + 2x_2 \]
\[x'_2 = -x_1 + 4x_2 \]

subject to the initial conditions \(x_1(0) = 1 \) and \(x_2(0) = 1 \).