Math 165: Linear Algebra with Differential Equations

Final Exam
December 15, 2015

NAME (please print legibly): ________________________________
Your University ID Number: ________________________________

Instructions:

1. Indicate your instructor with a check in the appropriate box:

<table>
<thead>
<tr>
<th>Instructor</th>
<th>Schedule</th>
</tr>
</thead>
<tbody>
<tr>
<td>Herman</td>
<td>MWF 10:25</td>
</tr>
<tr>
<td>Lubkin</td>
<td>MW 2:00</td>
</tr>
<tr>
<td>Madhu</td>
<td>TR 2:00</td>
</tr>
<tr>
<td>McTague</td>
<td>MWF 9:00</td>
</tr>
<tr>
<td>Rivera-Letelier</td>
<td>TR 3:25</td>
</tr>
</tbody>
</table>

2. Read the notes below:

- The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.
- Notes of any kind are strictly forbidden.
- Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.
- You are responsible for checking that this exam has all 12 pages.

3. Read the following Academic Honesty Statement and sign:

I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

Signature: __

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>5</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>6</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td></td>
<td>8</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
<td></td>
<td>TOTAL</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
Part A
1. (10 points)

(a) Solve the initial value problem:

$$\frac{dx}{dt} + \frac{2}{4 - t} x = 5, \quad x(0) = 4.$$

(b) Solve the initial value problem

$$(x^2 + 1)y' + y^2 = -1, \quad y(0) = 1.$$
2. (10 points)

(a) Compute the determinant in terms of $a, b, c,$ and d showing all your steps:

$$
\text{det} \begin{bmatrix}
0 & 0 & a & b \\
0 & 0 & c & d \\
a & b & 0 & 0 \\
c & d & 0 & 0
\end{bmatrix}
$$
(b) Let $k \in \mathbb{R}$ and a 3×3 matrix A be given by

$$A = \begin{bmatrix} r_1 \\ r_2 \\ r_3 \end{bmatrix}$$

Suppose the row vectors satisfy

$$r_3 = 4r_1 + kr_2.$$

Find all values of k for which the system

$$A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix}$$

has a unique solution. If there are no values of k, explain why not.
3. (10 points)

(a) Which of the following are subspaces of P_3? Circle all that apply, or write “NONE”. Answer only; no partial credit will be awarded. Your answer must be perfect to receive credit.

1. span($\{t, 2t - 6\}$)
2. $\{p(t)|p(1) = 0\}$
3. $\{p(t)|\int_0^1 p(t)dt = 1\}$

(b) Which of the following subsets of $M_2(\mathbb{R})$ span $M_2(\mathbb{R})$? Circle all that apply, or write “NONE”. Answer only; no partial credit will be awarded. Your answer must be perfect to receive credit.

1. $\begin{Bmatrix}
\begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}, \begin{bmatrix} -3 & 4 \\ 4 & -3 \end{bmatrix}, \begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 3 & -5 \\ -5 & 3 \end{bmatrix}
\end{Bmatrix}$
2. $\begin{Bmatrix}
\begin{bmatrix} 3 & 0 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 3 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 3 \\ 0 & 0 \end{bmatrix}
\end{Bmatrix}$
3. $\begin{Bmatrix}
\begin{bmatrix} 3 & 2 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 2 \\ 0 & 3 \end{bmatrix}
\end{Bmatrix}$
(c) Which of the following subsets of \mathbb{R}^3 are linearly independent? Circle all that apply, or write “NONE”. Answer only; no partial credit will be awarded. Your answer must be perfect to receive credit.

1. $\{(1, 2, 3), (4, 5, 6), (7, 8, 9)\}$
2. $\{(1, 0, 0), (0, 1, 0), (0, 0, 0)\}$
3. $\{(1, 2, 3), (4, 5, 6), (2, 1, 0)\}$

(d) Which of the following subsets of P_2 form a basis for P_2? Circle all that apply, or write “NONE”. Answer only; no partial credit will be awarded. Your answer must be perfect to receive credit.

1. $\{t^2 + 2t + 3, 4t^2 + 5t + 6, 7t^2 + 8t + 9\}$
2. $\{t - 1, 2t - 3, t\}$
3. $\{2t + 3, t^2 + 2t, 2t^2 + 2t - 3\}$
4. (10 points) Let $T : \mathbb{R}^4 \rightarrow \mathbb{R}^3$ be a linear transformation given by $T(v) = Av$, where

$$A = \begin{bmatrix} 1 & 0 & 5 & 0 \\ -2 & 4 & 0 & 5 \\ 0 & 1 & 0 & 1 \end{bmatrix}.$$

(a) Find a basis for the kernel of T.

(b) Find a basis for the range of T.
Part B
5. (10 points) Consider the matrix

\[
A = \begin{bmatrix}
1 & 1 & 3 \\
5 & 2 & 6 \\
-2 & -1 & -3
\end{bmatrix}.
\]

(a) Find all the eigenvalues of the matrix \(A \).

(b) For each eigenvalue of \(A \), find all the corresponding eigenvectors of \(A \).
6. (10 points)

(a) Find the general solution to the differential equation:

\[y^{(4)} + 2y'' + y = 0 \]

[Hint: A polynomial \(P(r) \) having only even powers can be factored in stages by first considering it as a polynomial in \(r^2 \).]

(b) Find the general solution to the differential equation:

\[y^{(5)} + 2y''' + y' = x \]
7. (10 points) Suppose an $m = 1 \text{ kg}$ mass is attached to a spring and dropped. What is the strongest the spring can be—that is, how large can the spring constant $k > 0$ be, measured in $N/m = kg/s^2$—to ensure that the mass does not pass through the equilibrium position $y = 0$ more than once? Assume the damping constant $c = 2 \text{ kg/s}$.

[Hint: Recall that the spring mass system is modeled by the differential equation $my'' + cy' + ky = 0$.]
8. (10 points) Find all solutions of the following system of differential equations,

\[x' = 3x + 4y + 2z; \]
\[y' = x + 2y + z; \]
\[z' = -7x - 10y - 5z. \]