1. (10 points)

(a) (6 points) Prove there exist infinitely many primes.

(b) (4 points) What is the octal expansion of the integer with hexadecimal expansion \((12C)_{16}\)? Show all your work.

Work:
The first step is to find the binary expansion of \((12C)\) \(_{16}\). Since \(1 = (0001)\) \(_2\), \(2 = (0010)\) \(_2\), and \(C = 12 = (1100)\) \(_2\) we get

\[
(12C) = (0001|0010|1100) = (000100101100)\.
\]

The second step is to obtain the octal expansion of

\[
(000100101100) = (000100101100) = (0454)\.
\]

Answer: \((12C)_{16} = (454)\).
2. (10 points)

(a) (2 points) Find 3^{203} mod 11. Show all your work.

Solution: Fermat’s little Theorem gives $3^{10} \equiv 1 \pmod{11}$ (11 is a prime). Therefore

$$3^{203} \equiv (3^{10})^{20} \cdot 3 \equiv 1^{20} \cdot 27 \equiv 27 \equiv 5 + 2 \cdot 11 \equiv 5 \pmod{11}.$$
Answer: $3^{173} = 5 \pmod{11}$.

(b) (8 points) The following system of congruences

$$\begin{cases} x & \equiv 1 \pmod{10} \\ x & \equiv -1 \pmod{17} \end{cases}$$

has a unique solution modulo a positive integer m. Write down m (bottom of next page) and also find the smallest positive integer x that satisfies both congruences. Show all your work. To receive full credit you must use methods developed in the course. Guessing or ad hoc methods will receive little credit.

Work: The Chinese Remainder Theorem states that $m = 10 \cdot 17 = 170$.

The unique solution modulo 170 is, in Webwork notation, given by

$$x \equiv a_1 \hat{m}_1 \hat{y}_1 + a_2 \hat{m}_3 \hat{y}_2 \pmod{170},$$

where a_i is the “right hand side of the ith congruence”, m_i is the “modulus of the ith congruence”, $\hat{m}_i = m/m_1$, and \hat{y}_i is the inverse of \hat{m}_i modulo m_i.

We immediately have $a_1 = 1$ and $\hat{m}_1 = 17$; $a_2 = -1$ and $\hat{m}_2 = 10$.

To find the \hat{y}_i we “reverse Euclid’s algorithm for 10 and 17”.

$$17 = 10 + 7$$
$$10 = 7 + 3$$
$$7 = 2 \cdot 3 + 1.$$

Therefore

$$1 = 7 - 2 \cdot 3$$
$$= 7 - 2 \cdot (10 - 7) = 3 \cdot 7 - 2 \cdot 10$$
$$= 3 \cdot (17 - 10) - 2 \cdot 10$$
$$= 3 \cdot 17 - 5 \cdot 10.$$

So $\hat{y}_1 = 3$ and $\hat{y}_2 = -5$. Finally $x \equiv 1 \cdot 17 \cdot 3 + (-1) \cdot 10 \cdot (-5) \equiv 101 \pmod{170}$.

Answer: $m = 170$ and $x = 101$.

3. (10 points)

(a) (4 points) You are given the following affine encryption cipher on the “canonical” residues mod 7: 0, 1, …, 6

\[f(p) = 4p - 1 \mod 7. \]

Decrypt the ciphertext message “122” showing all your work. To receive full credit you must use methods developed in the course. Guessing or ad hoc methods will receive little credit.

Solution: The first step is to find the inverse \(f^{-1} \) of \(f \) modulo 7. If

\[q \equiv f(p) \equiv 4p - 1 \mod 7, \]

then

\[p \equiv 4^{-1}(q + 1) \equiv 2(q + 1) \mod 7 \]

and so \(f^{-1}(p) = 2(p + 1) \mod 7 \).

The next step is to apply \(f^{-1} \) to 1 and 2: \(f^{-1}(1) = 2(1+1) = 4 \) and \(f^{-1}(2) = 2(2+1) = 6 \mod 7 \).

So the original message was 466.

Answer: 122 is code for 466.

(b) (6 points) Prove that for all non-negative integers \(n \geq 1 \)

\[\sum_{i=1}^{n} i^3 = \frac{n^2(n+1)^2}{4}. \]

Solution: Proof by induction.

Base case: When \(n = 1 \), the identity reduces to \(1^3 = \frac{1^2 \cdot 2^2}{4} \).

Inductive step: Assume the statement is true for \(n = k \) and deduce it for \(n = k + 1 \).

\[
\sum_{i=1}^{k+1} i^3 = \sum_{i=1}^{k} i^3 + (k+1)^3 \\
= \sum_{i=1}^{k} i^2 + (k+1)^3 \\
= \frac{k^2(k+1)^2}{4} + (k+1)^3 \\
= \frac{(k+1)^2(2k^2 + 4(k+1))}{4} \\
= \frac{(k+1)^2(2k^2 + 4k + 4)}{4} \\
= \frac{(k+1)^2(k+2)^2}{4}.
\]

\(\square \)