NAME (please print legibly): _______________________________
Your University ID Number: _______________________________

Instructions:

1. Read the notes below:

 • The presence of any electronic or calculating device at this exam is strictly forbidden, including (but not limited to) calculators, cell phones, and iPods.

 • Notes of any kind are strictly forbidden.

 • Show work and justify all answers. You may not receive full credit for a correct answer if insufficient work is shown or insufficient justification is given.

 • You are responsible for checking that this exam has all 9 pages.

2. Read the following Academic Honesty Statement and sign:

 I affirm that I will not give or receive any unauthorized help on this exam, and that all work will be my own.

 Signature: __

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>40</td>
<td></td>
</tr>
</tbody>
</table>
1. (10 points)

(a) (3 points) The statement ‘all non-negative real numbers are squares’ can be expressed as the following logical expression:

\[\forall x \geq 0 \exists y \ (x = y^2) \].

Write the negation of the above statement using logical expressions so that the negation symbol \(\neg \) does not appear.

(b) (3 points) The implication ‘if \(x \) is a non-negative real number, then it is a square’ can be expressed as the following logical expression:

\[(x \geq 0) \rightarrow [\exists y \ (x = y^2)] \].

Write the contrapositive of the above implication using logical expressions so that the negation symbol \(\neg \) does not appear.
(c) (4 points) Let $S = \{+, *\}$. Write down the Cartesian product $S \times S$ and the power set $\mathcal{P}(S)$.

$S \times S = \{\}$

$\mathcal{P}(S) = \{\}$
2. (10 points)

(a) (6 points) Let x be a positive integer. Prove that the following statements are equivalent:

(i) x is odd.
(ii) $x^2 + 1$ is even.
(b) (2 points) Let x be a positive integer. Prove that if x^2 is even, then x^3 is even.

(c) (2 points) Let x be a rational number. Is it true that $x(x - 1)$ is a rational number? Provide a proof or an explicit counter example.
3. (10 points) For each of the following functions $f : \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ prove or disprove (by an explicit counter example) each of the following:

- f is injective (one-to-one),
- f is surjective (onto),
- f is bijective.

(a) (5 points) $f(x, y) = (y, x + y)$.

Is f bijective? YES NO
(b) (5 points) \(f(x, y) = (y^2, x) \).

Is \(f \) bijective? YES NO
4. (10 points)

(a) (3 points) Write a pseudocode or give an accurate description of the “bubble sort” algorithm, which puts \(n \) real numbers \(a_1, \ldots, a_n \) in increasing order.

(b) (1 point) The algorithm requires \(\Theta(n^k) \) comparisons, for what integer value of \(k \)?

\[k = ____ \]
(c) (4 points) For each of the following functions \(f(x) \) find the smallest \(k \in \{0, 1, \ldots \} \) and the largest \(\ell \in \{0, 1, \ldots \} \) such that \(f(x) = O(x^k) \) and \(f(x) = \Omega(x^\ell) \).

(i) \(f(x) = 10x^3 \ln(x) + \ln(x)^4 \).

\[k = \quad \ell = \]

(ii) \(f(x) = \frac{3x + x^2 \ln(x)}{10 + x/\ln(x)} \).

\[k = \quad \ell = \]

(d) (2 points) For each of the following functions \(f(x) \) find a “simple” function \(g(x) \) so that \(f(x) = \Theta(g(x)) \). You are not allowed to use \(g(x) = f(x) \) nor should you write \(x = \Theta(2x) \).

(i) \(f(x) = \frac{1}{x} + 5x2^x - 3x^{100} \).

\[g(x) = \]

(ii) \(f(x) = (x - 9 \cdot 4^x)(-2\ln(x) + 5) \).

\[g(x) = \]