1. (16 points) Consider the functions \(y = x^2 \) and \(y = 3x \).

(a) Sketch the region enclosed by the graphs of the given functions, and find the area of this region.

(b) Let \(S \) be the solid obtained by rotating the above region about the \(x \)-axis. Sketch \(S \), along with a typical cross-section of \(S \), and find the volume of \(S \) using the washer method (also called the cross-sectional method.)

Solution: (a) A sketch of a similar region is on page 426 in the textbook (page 448 in the 5th edition). The area of the region is

\[
A = \int_0^3 (3x - x^2) \, dx = \left[\frac{3x^2}{2} - \frac{x^3}{3} \right]_0^3 = \frac{3 \cdot 3^2}{2} - \frac{3^3}{3} = \frac{27}{2} = \frac{9}{2}.
\]

(b) A sketch of a similar solid of revolution is on page 426 in the textbook (448 in the 5th edition). Using washers, the volume is

\[
V = \int_0^3 (\pi (3x)^2 - \pi (x^2)^2) \, dx = \pi \left[\frac{9x^3}{3} - \frac{x^5}{5} \right]_0^3 = \pi \left(\frac{9 \cdot 3^3}{3} - \frac{3^5}{5} \right) = \frac{162\pi}{5}.
\]
2. (16 points) Again consider the functions $y = x^2$ and $y = 3x$.

(a) Let S be the solid obtained by rotating the region bounded by the graphs of these functions about the y-axis. Sketch S, along with a typical cylindrical shell inside S, and find the volume of S using the cylindrical shells method.

(b) Let S be the solid obtained by rotating the region bounded by the graphs of these functions about the line $x = -3$. Sketch S and find the volume of S using whichever method you want (washer method or cylindrical shells.)

Solution: (a) A similar problem is done in complete detail in your textbook on page 435 (page 457 of the 5th edition), so we only give the answer here.

\[
V = \int_0^3 (2\pi x) (3x - x^2) \, dx = 2\pi \int_0^3 (3x^2 - x^3) \, dx \\
= 2\pi \left[x^3 - \frac{x^4}{4} \right]_0^3 = 2\pi \left(27 - \frac{81}{4} \right) = \frac{27\pi}{2}
\]

(b) A similar problem is done using washers in your textbook on page 429 (pages 449-450 in the 5th edition), so we only give the answer here.

\[
V = \int_0^9 \left[\pi(3 + \sqrt{y})^2 - \pi \left(3 + \frac{y}{3} \right)^2 \right] \, dy \\
= \pi \int_0^9 \left(9 + 6\sqrt{y} + y - 9 - 2y - \frac{y^2}{9} \right) \, dy \\
= \pi \int_0^9 \left(6\sqrt{y} - y - \frac{y^2}{9} \right) \, dy \\
= \pi \left[4y^{3/2} - \frac{y^2}{2} - \frac{y^3}{27} \right]_0^9 = \pi \left(108 - \frac{81}{2} - 27 \right) = \frac{81\pi}{2}.
\]

Using cylindrical shells, the radius is $(3 + x)$, the height is $(3x - x^2)$, and the volume is

\[
V = \int_0^3 2\pi (3 + x) (3x - x^2) \, dx = 2\pi \int_0^3 (9x - x^3) \, dx \\
= 2\pi \left[\frac{9x^2}{2} - \frac{x^4}{4} \right]_0^3 = 2\pi \left(\frac{81}{2} - \frac{81}{4} \right) = \frac{81\pi}{2}.
\]
3. (10 points) A rectangular swimming pool is 10 meters long and 4 meters wide, the sides are 2 meters high and the depth of the water is 1.5 meters. How much work is required to pump out all the water over the side? (Note: Use $g = 9.8 m/s^2$ as the acceleration due to gravity and 1000 kg/m^3 as the density of water. Remember that 1 Joule = $1 \text{ kg m}^2\text{s}^{-2}$.)

Solution: Let y_i^* be the height of the ith layer of water, $0 \leq y_i^* \leq 1.5$. An approximation to volume of the ith layer of water is

$$V_i \approx \text{(area)(thickness)} = 40 \Delta y.$$

The ith layer of water must travel a vertical distance of $2 - y_i^*$ to the top of the tank. Thus, the amount of work done pumping the water out of the tank is

$$W = \lim_{n \to \infty} \sum_{i=1}^{n} (\text{density})(\text{volume})(\text{acceleration})(\text{distance})$$

$$= \lim_{n \to \infty} \sum_{i=1}^{n} (1000)(40 \Delta y)(9.8)(2 - y_i^*)$$

$$= 392000 \int_{0}^{1.5} (2 - y) \, dy$$

$$= 392000 \left[2y - \frac{y^2}{2} \right]_{0}^{1.5}$$

$$= 392000 \left(3 - \frac{9}{8} \right)$$

$$= 392000 \frac{15}{8}$$

$$= 735000 \text{ Joules}.$$
4. (15 points) Evaluate the following integrals:

(a) \[\int x^2 \cos(x^3 + 26) \, dx \]

(b) \[\int_e^{2e} \frac{1}{x(\ln x)^3} \, dx \]

(c) \[\int x^5 \sqrt{1 + x^2} \, dx \]

Solution: (a) Let \(u = x^3 + 26 \), then \(du = 3x^2 \, dx \) and

\[
\int x^2 \cos(x^3 + 26) \, dx = \frac{1}{3} \int \cos(u) \, du = \frac{1}{3} \sin(u) + C = \frac{\sin(x^3 + 26)}{3} + C
\]

Solution: (b) Let \(u = \ln x \), then \(du = \frac{1}{x} \, dx \) and when \(x = 2e \), \(u = \ln(2e) = 1 + \ln(2) \), when \(x = e \), \(u = 1 \), and

\[
\int_e^{2e} \frac{1}{x(\ln x)^3} \, dx = \left[\frac{1}{u^2} \right]_1^{1+\ln(2)} = -\frac{1}{2u^2} \bigg|_1^{1+\ln(2)} = -\frac{1}{2(1 + \ln(2))^2} - \left(-\frac{1}{2} \right) = \frac{1}{2} - \frac{1}{2(1 + \ln(2))^2}
\]
Solution: (c) Let \(u = 1 + x^2 \), then \(du = 2x \, dx \), \(x^2 = u - 1 \), and
\[
\int x^5 \sqrt{1+x^2} \, dx = \int x^4 \sqrt{1+x^2} \, x \, dx
\]
\[= \frac{1}{2} \int (u - 1)^2 \sqrt{u} \, du \]
\[= \frac{1}{2} \int (u^2 - 2u + 1)u^{1/2} \, du \]
\[= \frac{1}{2} \int u^{5/2} - 2u^{3/2} + u^{1/2} \, du \]
\[= \frac{1}{2} \left[\frac{2}{7} u^{7/2} - \frac{2}{5} u^{5/2} + \frac{2}{3} u^{3/2} \right] + C \]
\[= \frac{u^{7/2}}{7} - \frac{2u^{5/2}}{5} + \frac{u^{3/2}}{3} + C \]
\[= \frac{(1 + x^2)^{7/2}}{7} - \frac{2(1 + x^2)^{5/2}}{5} + \frac{(1 + x^2)^{3/2}}{3} + C \]
\[= \frac{(1 + x^2)^{7/2}}{105} (8 - 12x^2 + 15x^4) + C \]
5. (15 points) Evaluate the following integrals:

(a) \(\int x^2 e^x \, dx \)

(b) \(\int x \sin x \, dx \)

(c) \(\int \arctan(2x) \, dx \)

Solution: (a) Use integration by parts with \(u = x^2 \) and \(dv = e^x \, dx \), then \(du = 2x \, dx \) and \(v = e^x \) and

\[
\int x^2 e^x \, dx = x^2 e^x - 2 \int x e^x \, dx
\]

Using integration by parts a second time with \(u = x \) and \(dv = e^x \, dx \), then \(du = dx \) and \(v = e^x \), the integral becomes:

\[
x^2 e^x - 2 \left(xe^x - \int e^x \, dx \right) = x^2 e^x - 2[xe^x - e^x] + C = (x^2 - 2x + 2)e^x + C
\]

Solution: (b) Use integration by parts with \(u = x \) and \(dv = \sin x \, dx \), then \(du = dx \) and \(v = -\cos x \) and

\[
\int x \sin x \, dx = -x \cos x + \int \cos x \, dx = -x \cos x + \sin x + C
\]

Solution: (c) Use integration by parts with \(u = \arctan(2x) \) and \(dv = dx \), then \(du = \frac{2}{1 + (2x)^2} \, dx \) and \(v = x \) and

\[
\int \arctan(2x) \, dx = x \arctan(2x) - 2 \int \frac{x}{1 + (2x)^2} \, dx
\]

Now using the substitution \(u = 4x^2 \), then \(du = 8x \, dx \) and the integral becomes:

\[
x \arctan(2x) - \frac{1}{4} \int \frac{1}{1 + u} \, du = x \arctan(2x) - \frac{1}{4} \ln|1 + u| + C
\]

\[
= x \arctan(2x) - \frac{1}{4} \ln|1 + 4x^2| + C
\]
6. (14 points) Evaluate the following integrals:

(a) \[\int_{0}^{10} \frac{1}{\sqrt{x - 10}} \, dx \]

(b) \[\int \sin^5 \theta \cos^{10} \theta \, d\theta \]

Solution: (a) This is an improper integral:

\[\int_{0}^{10} \frac{1}{\sqrt{x - 10}} \, dx = \lim_{b \to 10^-} \int_{0}^{b} \frac{1}{\sqrt{x - 10}} \, dx \]

Now, let \(u = x - 10 \), then \(du = dx \) and when \(x = 0, u = -10 \), when \(x = b, u = b - 10 \). Now the integral becomes:

\[\lim_{b \to 10^-} \int_{-10}^{b-10} u^{-1/3} \, du = \lim_{b \to 10^-} \frac{3}{2} u^{2/3} \bigg|_{-10}^{b-10} = \frac{3}{2} [(b - 10)^{2/3} - (-10)^{2/3}] = -\frac{3}{2} 10^{2/3} \]

Solution: (b) Notice that the power of \(\sin \) is odd, so we factor out \(\sin \theta \) and write everything in terms of \(\cos \theta \):

\[\int \sin^5 \theta \cos^{10} \theta \, d\theta = \int \sin^4 \theta \cos^{10} \theta \sin \theta \, d\theta = \int (\sin^2 \theta)^2 \cos^{10} \theta \sin \theta \, d\theta = \int (1 - \cos^2 \theta)^2 \cos^{10} \theta \sin \theta \, d\theta \]

Now let \(u = \cos \theta \), then \(du = -\sin \theta \, d\theta \) and

\[\int \sin^5 \theta \cos^{10} \theta \, d\theta = -\int (1 - u^2)^2 u^{10} \, du = -\int (1 - 2u^2 + u^4) u^{10} \, du = -\int (u^{10} - 2u^{12} + u^{14}) \, du = -\left[\frac{u^{11}}{11} - \frac{2u^{13}}{13} + \frac{u^{15}}{15} \right] + C = -\left[\frac{\cos^{11} \theta}{11} - \frac{2\cos^{13} \theta}{13} + \frac{\cos^{15} \theta}{15} \right] + C = -\frac{\cos^{11} \theta}{11} + \frac{2\cos^{13} \theta}{13} - \frac{\cos^{15} \theta}{15} + C \]
7. (14 points) Evaluate the following integrals.

(a) \[\int \frac{1}{\sqrt{49 + x^2}} \, dx \]

(b) \[\int \frac{1}{x^2 + 8x + 15} \, dx \]

Solution: (a) Use the trigonometric substitution \(x = 7 \tan \theta \), then \(d\theta = 7 \sec^2 \theta \), and

\[
\int \frac{1}{\sqrt{49 + x^2}} \, dx = \int \frac{1}{\sqrt{49 + 49 \tan^2 \theta}} \, 7 \sec^2 \theta \, d\theta
\]

\[
= \int \frac{1}{\sqrt{49(1 + \tan^2 \theta)}} \, 7 \sec^2 \theta \, d\theta
\]

\[
= \int \frac{1}{\sec \theta} \, \sec^2 \theta \, d\theta
\]

\[
= \int \sec \theta \, d\theta
\]

\[
= \int \frac{\sec \theta + \tan \theta}{\sec \theta + \tan \theta} \, d\theta
\]

Now let \(u = \sec \theta + \tan \theta \), then \(du = \sec^2 \theta + \sec \theta \tan \theta \) and

\[
\int \frac{1}{\sqrt{49 + x^2}} \, dx = \int \frac{\sec^2 \theta + \sec \theta \tan \theta}{\sec \theta + \tan \theta} \, d\theta
\]

\[
= \int \frac{1}{u} \, du
\]

\[
= \ln |u| + C
\]

\[
= \ln |\sec \theta + \tan \theta| + C
\]

And since \(x = 7 \tan \theta \), then \(\tan \theta = \frac{x}{7} \) and using a right triangle (or \(\tan^2 \theta + 1 = \sec^2 \theta \)) we get \(\sec \theta = \frac{\sqrt{x^2 + 49}}{7} \). Now:

\[
\int \frac{1}{\sqrt{49 + x^2}} \, dx = \ln |\sec \theta + \tan \theta| + C
\]

\[
= \ln \left| \frac{\sqrt{x^2 + 49}}{7} + \frac{x}{7} \right| + C
\]
Solution: (b) Factorizing the denominator we can re-write the integral

\[\int \frac{1}{x^2 + 8x + 15} \, dx = \int \frac{1}{(x + 3)(x + 5)} \, dx \]

Now using partial fractions:

\[\frac{1}{(x + 3)(x + 5)} = \frac{A}{x + 3} + \frac{B}{x + 5} = \frac{A(x + 5) + B(x + 3)}{(x + 3)(x + 5)} \]

Since the denominators are the same we can find \(A \) and \(B \) by setting the numerators equal to each other:

\[1 = A(x + 5) + B(x + 3) \]

This equation holds for all real numbers in particular for \(x = -5 \) we get \(B = -\frac{1}{2} \) and for \(x = -3 \) we get \(A = \frac{1}{2} \). Now the integral becomes:

\[\int \frac{1}{x^2 + 8x + 15} \, dx = \int \frac{1}{2(x + 3)} - \frac{1}{2(x + 5)} \, dx \]

\[= \frac{1}{2} \int \frac{1}{x + 3} \, dx - \frac{1}{2} \int \frac{1}{x + 5} \, dx \]

\[= \frac{1}{2} \ln|x + 3| - \frac{1}{2} \ln|x + 5| + C \]