Name: ________________________________

• Justify your answers.

• No calculators are allowed on this exam, but you are allowed one sheet of paper with writing on both sides.

• The symbol \mathbb{R} stands for the set of real numbers, and \mathbb{Z} stands for the set of integers.

<table>
<thead>
<tr>
<th>QUESTION</th>
<th>VALUE</th>
<th>SCORE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>20</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>160</td>
<td></td>
</tr>
</tbody>
</table>
1. (20 points) Consider the following sets: \(A = \{1, 4, 9, 16\}, \ B = \{-2, -1, 0, 1, 2\}, \ C = \{1, 1, 2, 2, 2, 4\} \).

a) Compute \(A - C \).

b) Compute \((A \cup C) \cap B \).

c) Compute \(|C|\).

d) Compute the power set \(\mathcal{P}(C) \).
2. (10 points) Is \((p \rightarrow r) \land (q \rightarrow r)\) logically equivalent to \((p \land q) \rightarrow r\)?
3. **(20 points)** Explain whether the following arguments are valid.

a) Every positive real number is the square of a real number.
-1 is not a positive real number.
Therefore, -1 is not the square of a real number.

b) If an object is either a plant or an animal, then it is a living thing.
A rock is not a living thing.
Therefore, a rock is not a plant.
4. (40 points) Consider the following quantified statements, for which the domain of discourse is \mathbb{R}. State whether each is true or false. Explain your answer in 1-2 sentences (you do not need to write a formal proof).

a) $\exists x \forall y, xy = 0$

b) $\forall x \exists y, x + y = y$

c) $\forall x \forall y, x + y = y + x$

d) $\exists x \exists y, (x + 2y = 1) \land (2x + 4y = 3)$
5. (40 points) Let $n \in \mathbb{Z}$. For this problem, we say that:

n is type 0 if there exists an integer k such that $n = 3k$,

n is type 1 if there exists an integer k such that $n = 3k + 1$, and

n is type 2 if there exists an integer k such that $n = 3k + 2$.

Every integer is either type 0, type 1, or type 2 (you may assume this fact without proof). Prove the following statements, for which the domain of discourse is \mathbb{Z}.

a) If x is type 1 and y is type 2, then $x + y$ is type 0.

b) If x is type 1 and y is type 2, then xy is type 2.
c) No integer is both type 1 and type 2.

d) If $n = x^2$, then n is either type 0 or type 1.
6. (30 points) Consider the functions below. For each one, determine if it is injective and if it is surjective. Prove your assertions.

a) $f : \mathbb{Z} \to \mathbb{Z}$ given by $f(x) = 2x + 3$

b) $g : \mathbb{R} \to \mathbb{R}$ given by $g(x) = 2x + 3$

c) $h : \mathbb{R} \to \mathbb{Z}$ given by $h(x) = \lfloor x \rfloor$